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Abstract—We present a method to extract and visualize vortices that originate from bounding walls of three-dimensional time-
dependent flows. These vortices can be detected using their footprint on the boundary, which consists of critical points in the wall
shear stress vector field. In order to follow these critical points and detect their transformations, affected regions of the surface are
parameterized. Thus, an existing singularity tracking algorithm devised for planar settings can be applied. The trajectories of the
singularities are used as a basis for seeding particles. This leads to a new type of streak line visualization, in which particles are
released from a moving source. These generalized streak lines visualize the particles that are ejected from the wall. We demonstrate
the usefulness of our method on several transient fluid flow datasets from computational fluid dynamics simulations.

Index Terms—Skin friction, singularity tracking, vortex, generalized streak line, flow visualization, time-dependent vector fields.

1 INTRODUCTION

Simulation and visualization of fluid flows plays an important role dur-
ing the design process in engineering practice. Automobiles, turbines,
motors, and buildings are only few examples. In a broad variety of
applications the onset and behavior of vortices as well as their inter-
action with the object under consideration is of great practical sig-
nificance. For automobiles, vortices have an important influence on
the drag coefficient, which affects fuel efficiency and overall vehi-
cle performance. In turbines and motors, vortices are critical as they
hamper energetic efficiency, while they impact the durability of tall
buildings in urban design. In this context, visualization can help to
find, analyze and interpret these vortices in the numerical simulations
that are used for their study. Typically, the analysis focuses on the
three-dimensional structures present in the flow and on their interac-
tion with the shear stress vector field. The latter resembles the tangen-
tial flow near the surface of an object and forms the patterns that can
be observed in wind tunnel experiments. Vortices, when they interact
with the body, leave a certain characteristic footprint in the shear stress
field. Vortices tangential to the object boundary drag flow away from
the surface along lines of strongly hyperbolic skin friction lines known
as separation lines [12]. In contrast, vortices with a core line normal to
the surface (see e.g. Fig. 5 right image) or with a certain angle of incli-
nation leave singularities at the locations where their vortex core line
touches the object. It has been shown that the topological structure
and in particular the singularities of the wall shear stress are essen-
tial to characterize the three-dimensional flow structures surrounding
the body [2, 26, 27]. A combined structural analysis of the fluid flow
and the shear stress vector field thus improves the understanding and
interpretation of the phenomena of interest.

In this paper, new methods are presented to track singularities over
curved surfaces in time-dependent vector fields and elucidate the in-
terconnections between the critical points of the wall shear stress and
the three-dimensional flow. In order to employ efficient singularity
tracking schemes for planar settings, selected regions of the surface
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are parameterized and thus mapped to the plane. The paths of the
tracked singularities depict the loci, where particles are injected into
the three-dimensional flow. These particles form a generalized streak
line, which reflects the interrelation between wall shear stress and
three-dimensional flow.

The remainder of the paper is organized as follows. We first review
previous work on topology-based vector field visualization and in par-
ticular singularity tracking schemes in transient vector fields. Then,
in Section 3, we describe the method we use for singularity tracking
on curved surfaces. Section 4 introduces our concept of generalized
streak lines and explains how we combine singularity tracking with
the new streak line definition. Section 5 introduces the datasets that
were used to test our method and Section 6 discusses the results. Fi-
nally, conclusions are drawn in Section 7.

2 RELATED WORK

The research topics involved in the present work are briefly considered
next.

Singularity Tracking. Topology provides a powerful framework
to characterize and study the structures of fluid flows. It has proven
successful in scientific visualization and many methods have been pro-
posed [24, 14] that leverage its theoretical foundations to achieve ef-
fective depictions of complex vector fields. Of particular relevance for
the present work are the techniques that permit to track the continu-
ous evolution of the topology as it evolves over time. Improving on a
scheme introduced by Helman and Hesselink [11], which graphically
reconnects the topological skeletons extracted in successive time steps,
Tricoche et al. [30] proposed a scheme that computes the continuous
path followed by two-dimensional singularities (where the flow veloc-
ity vanishes) across the space-time domain. Their approach explicitly
characterizes bifurcations, which correspond to critical changes affect-
ing the structure of the topological skeleton. An alternative method
was introduced by Theisel ef al. [29], that extracts the topological evo-
lution by means of numerical integration over the space-time contin-
uum. Extensions to three-dimensional transient flows have been pre-
sented for both methods [8, 28].

In contrast, the tracking of vector field topology over curved sur-
faces bears specific challenges and has not, to the best of our knowl-
edge, been considered so far in the visualization literature. Related to
our work, however, is research that compares flow topology on curved
surfaces to the three-dimensional flow, e.g. work by Garth et al. [7].

Vector Field Interpolation Over Polygonal Surfaces. In order
to extend existing 2D singularity tracking schemes to polygonal 3D
surfaces a proper interpolation scheme must be used that provides a
continuous reconstruction of a tangential vector field over the mesh



(a) Singularity paths on draft tube.

(b) LSCM (c) Floater Mean Value Coordinates

Fig. 1. (a) (left) Singularity paths tracked on surface of upper part of draft tube. The region used for tracking is highlighted. The image shows all
paths extracted by the tracking method using LSCM parameterization. (right) The upper image shows a close up of the same paths. The lower
image shows paths for tracking with mean value parameterization and circular parameter space. The paths computed using LSCM parameterization
are smoother, and fewer artificial bifurcations show up. Images (b) and (c) show the singularity paths in in the parameter domain over time.

while being simple enough to permit an efficient and accurate extrac-
tion of the corresponding topology. Yet, in the typical setting of a
triangle mesh the tangent space is constant within each cell but it is
discontinuous across edges and vertices. Hence, the piecewise linear
interpolation typically applied over triangle meshes yields discontin-
uous vector values across triangle boundaries. This leads to spurious
topological features when standard extraction algorithms are applied
to wall vector fields.

Several approaches have been recently introduced in the computer
graphics literature to address this problem. Li e al. [17] proposed a
method that models higher-order singularities and visualizes the re-
sulting flow on piecewise-linear surfaces. The authors introduced an
interpolation scheme on surfaces that exploits a facet-based represen-
tation of vector fields to permit a piecewise 2D treatment of singulari-
ties. However, a feature of this approach is that singularities are con-
strained to lie on the vertices of the mesh, which makes it unsuitable
for our problem. A second approach presented by Zhang et al. [33]
defines an interpolation scheme for vector field design over surfaces
using geodesic polar maps and parallel transport. While this scheme
supports the design of complex phase portraits, it yields a non-linear
vector field inside each triangle. The Jacobian matrix required for
topological analysis must therefore be approximated through a local
linear fit, which seriously complicates the type of analysis required by
our method. Additionally, schemes have been proposed in the graph-
ics community that exploit principles from Discrete Exterior Calcu-
lus [10] to create tangent vector fields in the limit of a subdivision pro-
cess [31], or to permit the interactive editing of a discrete tangential
vector field over a triangle mesh [3].

Surface Parameterization A way to circumvent the challenge
posed by the construction of a suitable interpolation on a polygonal
surface consists in transporting the problem to the planar domain by
computing a parameterization of the mesh. This subsequently allows
for the straightforward application of 2D methods. However, for the
body surfaces typically used in numerical simulations this mapping
involves cuts and distortion, which in turn requires caution in the in-
terpretation of the results. Various techniques have been proposed in
the graphics literature. A discussion of available methods is clearly be-
yond the scope of this paper and we refer the interested readers to the
existing surveys [5, 6]. Most relevant to the present paper are Floater’s
Mean Value Coordinates method [4] and Levy et al.’s Least Squares
Conformal Map [16]. On arelated note, observe that the recently intro-
duced image-based flow visualization approach [15, 32] is essentially
built upon an interactive parameterization of the visible portion of a
mesh through simple projection, which permits the extension of dense
visualization techniques designed for planar flows to curved surfaces.

3 SINGULARITY TRACKING ON SURFACES

As mentioned previously, computing the path followed by the seeds
of our generalized streak lines requires to track the singularities of the
shear stress vector field over the triangle mesh that models the object
boundary. Yet, the piecewise flat nature of the geometry makes this an
ill-posed problem. Indeed, the discontinuity of the tangential vector
field across edges implies that a singularity leaving a cell will not, in
general, be able to resume its motion from the corresponding location
in the next cell. For instance, no singularity might be present on the
border or in the interior of the neighboring cell at the same instant, or
its type might be incompatible with the one of the currently followed
singularity in terms of local topology consistency. In any case, the
corresponding discontinuity challenges the very idea of tracking the
continuous transformation of the topology.

Following the observations we made in the previous section, a pos-
sible way to tackle this problem consists in parameterizing the mesh
such that further computation can be carried out in the plane using
the algorithms available in this setting. Observe that this transposition
is more than a mere computational fix to the tracking problem. Its
deeper motivation lies in the fact that the piecewise linear geometry
representation used for numerical simulations is itself an approxima-
tion of what in reality is a smooth object surface. Using the available
discrete information, our goal is therefore to bring the problem back
to a setting where surface topology and the continuous transformation
thereof are well-defined and applicable concepts, as they are in the
physical realm. We provide in this section a description of our track-
ing algorithm and discuss possible limitations. In particular, to avoid
the difficulty of computing a smooth global parameterization of the
whole surface, we choose to restrict our analysis to subregions of the
triangle mesh. With that assumption, our algorithm consists of 4 main
steps.

1. Select an interesting subregion

2. Parameterize subregion in the plane and express vector field in
parameter space

3. Perform 2D singularity tracking in parameter space

4. Map nodes of singularity paths back onto the triangle mesh for
visualization

We detail each of these steps in the following and proceed with con-
siderations linked to the visualization of the topological information.
3.1 Region Selection

As pointed out above, our method is designed to track singularities on
subregions of a surface. To be able to compute the parameterization of



Fig. 2. Singularity paths on the surface of ellipsoid tracked using LSCM
parameterization. left: Paths for all time steps on surface of ellipsoid.
right: Paths in parameter domain with time as third dimension.

a region our current implementation imposes some restrictions. First,
we require the region to be homeomorphic to a disc. Second, assuming
an a priori knowledge about the area in which a particular singularity
exists, we choose the region such that the singularity stays sufficiently
far to the region boundary over the whole course of its motion. Third,
we impose that the region does not contain sharp edges of the geome-
try. This last requirement is primarily motivated by the fact that sharp
edges in the design will typically create natural flow discontinuities
which the parameterization should not attempt to artificially smooth
out.

Note that because our implementation uses parameterization algo-
rithms designed for regions homeomorphic to a disc, we impose this
criterion to the regions that we select. Hence, we are not currently
able to track singularities that would travel over more complex surface
regions. This is not an intrinsic limitation of our approach, however,
since parameterization plays the role of a black box in our method
and more advanced, smooth global parameterization techniques exist
(e.g. [13, 21]) that could be used instead. See also the corresponding
discussion in Section 7.

3.2 Parameterization

To map the shear stress vector field to a 2D vector field we compute
a parameterization of the surface subregion under consideration. For
that purpose we have experimented with the Floater Mean Value Co-
ordinates parameterization method [4] and the Least Squares Confor-
mal Map (LSCM) [16], both of which are provided by the geometric
library CGAL [22]. The shape of the parameter space is a circle for
the mean value parameterization and a free boundary in the case of
LSCM. The LSCM parameterization produces less distorted triangles
in the parameter space and thus a better parameterization. Its draw-
back, however, is that the mapping cannot be guaranteed to be one-
to-one (in contrast to mean value coordinates) although it typically
is [5, 6]. For planar regions in 3D we obviously use the canonical
(isometric) parameterization obtained by simply defining a local coor-
dinate system directly on the surface.

Once the considered region has been parameterized, its correspond-
ing (time-dependent) vector values must be transformed accordingly.
Obtaining 2D coordinates for those vectors amounts to projecting each
3D vector attached to a vertex of the mesh onto the basis vectors of the
local tangent plane induced by its local parameterization. Specifically,
with f: U C R — S C IR? denoting the function mapping the 2D pa-
rameter domain to the surface S and p € U, Q € S such that f(p) = Q,
the vector ¥, in parameter space corresponding to VQ in 3D has the 2D

coordinates ¥ = (Vg. % p"_}Q' % p).

3.3 Singularity Tracking in the Plane

To track the singularities of the resulting transient planar vector field
we use the technique proposed by Tricoche et al. [30]. Alternatively,
the same results can be achieved with the Feature Flow Field approach
of Theisel ef al. [29]. In a nutshell, both schemes follow the trajecto-
ries described by the singularities over a continuous reconstruction of

the space-time continuum and, along the way, detect bifurcations that
cause the creation and annihilation of singularities, as well as their
type change. Refer to the original papers for additional details. The
2D-tracking provides us with a polygonal description of the singular-
ity paths in the parameter space, along with associated bifurcations.
This information can then be mapped back in the physical space using
the parameterization function and its linear nature inside each triangle.

It is important to note that the reformulation of the tracking prob-
lem in the parameterization domain can generate artifacts in the form
of spurious topological features that have no practical significance. In
our case however, we choose the regions in such a way that these arti-
facts should be minimized. More importantly, because of the ill-posed
character of the tracking problem in the first place, we do not have a
ground truth with which to compare our results. Therefore we adopt
a more pragmatic approach. First, we apply filtering criteria to the re-
sulting singularity paths that are designed to prune insignificant topo-
logical features to which we expect artifacts to belong. Second, the
validation of our singularity paths comes from their use as seed points
for the generalized streak lines described below. Ultimately our re-
sults are deemed valid if they show good correlation with the transient
three-dimensional flow structure.

3.4 Visualization

Visualizing the paths of singularities moving on surfaces is not a trivial
task. There are at least three types of information that are necessary
to allow a scientist to interpret the paths: positions of nodes, type of
the singularity represented by a path and the time the singularity is lo-
cated at a certain position. If the paths are simply drawn as lines on the
surface, all information about their temporal extent and distribution is
lost, which makes it very hard to interpret the resulting images. In-
corporating temporal information in the line visualization by encoding
the advancing time as changing the color is not feasible because color
is rather used to describe the type of the singularity.

For 2D time-dependent fields the third dimension is used to illus-
trate the advancing time. This yields 3D representations of the chang-
ing topology. Unfortunately, it is not possible to apply this approach
directly to time-dependent vector fields on surfaces as these are of
three-dimensional nature themselves.

Instead, we decided to apply the standard 2D visualization approach
to the two-dimensional space we use for the tracking. This results in a
more schematic representation of the developing topology (see Figs. 1,
2 and 7). Although it does not reflect the geometry of the surface, we
believe that this schematic representation in combination with draw-
ing the paths on the surface, achieves the best overview possible with a
static visualization. Allowing the user to mark regions in the schematic
representation and highlighting the corresponding parts of the paths on
the surface in a focus and context fashion improves the utility of this
method (Figs. 7(b), 7(f)). In the images of Fig. 7 we additionally em-
phasized the paths of the sinks, as these are important for the general-
ized streak lines. In combination with filtering out paths of short-lived
and thus insignificant singularities, this results in much less cluttered
and more insightful images (compare Fig. 7(a) to 7(c)-7(d)).

All figures (except Figs. 7(b)-7(d),7(f)) showing singularity paths
use the following color scheme. Paths of saddles are drawn as red
lines, paths of sinks (attracting nodes) are drawn as blue lines and paths
of sources (repelling nodes) are drawn as green lines. Bifurcations are
represented by spheres. Red spheres indicate creation of singularities,
blue spheres annihilation of singularities and yellow spheres indicate
Hopf bifurcations.

4 GENERALIZED STREAK LINE

In this section, we introduce a generalization of streak lines. For this
purpose, we review the mathematical definitions and interpretations of
streak lines and path lines. Let v: R3 x U C R — R3 be a Lipschitz
continuous time-dependent vector field. Let a € R3 be the position of
a particle in space and let# € U be a certain time. We begin with path
lines, as streak lines can be expressed in a very simple way using path
lines.



Fig. 3. Overview of draft tube dataset. left: Parts of the flow topology on the surface of the lower part of the turbine draft tube. Sinks (blue) and
separatrices (white lines) on top of LIC texture indicate the existence of three vortices on the top and the right side of the tube. right: Isosurfaces
of A, seeded near singularities on side wall show vortices causing the singularities on the wall. Streamlines show the vortical behavior.

Path lines are integral curves pay(¢) of time-dependent vector
fields, which are tangential to the vectors of a field’s domain. They
are the trajectories of massless particles moving in a flow defined by
the vector field. Mathematically, this reads as follows:

t — pa,to(l)
Pas(fo) = a
0
ZER() = V(pan (1)),

ot

where 1 is the seed time.

Streak lines 1, ; are imaginary lines connecting the locations of par-
ticles that were released into a flow from a certain location at con-
secutive time steps. Thus, when dye or some other marking material
is discharged slowly at some fixed point in a moving fluid, the visi-
ble line produced in the fluid is a streak line (see e.g. Batchelor [1],
Lugt [18]). The lines can be observed when looking at the particles at
a certain time 7.

s = lag(s) = past)
Note that ¢ is fixed and s is the varying seed time.

Although we have not found it in the literature, our generaliza-
tion of streak lines is straight forward. Instead of releasing particles
from a stationary source, we consider particles released from a mov-
ing source. Thus, generalized streak lines I, are defined as imaginary
lines connecting the locations of particles that were released into a flow
from a location a(s) continuously moving along a path ¢ at consecu-
tive time steps. The line can be observed when looking at the particles
at a certain time 7.

N lc,t(s) = pa(s),s(t)

Again ¢ is fixed and s varies.

As far as we know, this type of streak lines has not been treated in
the visualization literature yet. This may be the case, as in experiments
the creation of streak lines from moving sources is not a simple task.
It becomes even harder, when trying not to influence the flow by the
movement of the source.

4.1 Singularity Streak Lines

The generalized streak lines considered throughout this paper use the
locations of moving singularities as locations of the particle source
(particle injection points). We call these special streak lines singu-
larity streak lines. While moving sources in general may be achiev-
able for experiments, moving sources with singularities is impossible.
One would have to detect the singularities in the experiment and at
the same time move the source accordingly. This is not possible. We
will discuss the importance and meaning of streak lines starting from
singularities in the following.

4.1.1 Singularity Paths as Particle Source

As mentioned earlier, vortices in the three-dimensional flow leave sin-
gularities of the shear stress field as footprints on a body’s surface. The
singularities are spiral sources if the flow attaches to the surface and
spiral sinks if flow leaves the surface, i.e. when particles are ejected
from the surface into the volume. Indeed, all singularities on the
body surface correspond to half-saddles in the three-dimensional flow
around the body. The 2D flow around the singularities on the body
are the unstable (sources) or stable (sinks) 2D-manifolds of the three-
dimensional saddles, i.e. the manifolds coincide with the body surface.
The remaining separatrix resides in the three-dimensional flow. It is a
stable manifold for sources and an unstable manifold for sinks on the
surface.

The unstable manifold in the three-dimensional flow is the reason
why we will consider only spiral sinks here. Our aim is to elucidate
which parts of the domain are reached by particles that leave the sur-
face through the vortex, or better where these particles are at a certain
time. This gives information about which regions of the flow are influ-
enced by the vortex corresponding to the sinks. It is also interesting,
when considering vorticity transport, as some of the vorticity which is
present at a certain position is advected! by particles passing the posi-
tion, and thus is transferred to other regions of space. This is especially
important since for incompressible flows vorticity can only be gener-
ated at walls or enter the fluid from an open boundary [1]. In other
words, it cannot be generated inside the fluid. This does not mean that
vortices cannot develop in the flow, which actually may be the case,
when vorticity concentrates at some point in space. It means that the
vorticity has either to be present in the flow right from the beginning of
observation time or that vorticity is advected or diffused into the flow
from the boundary.

Motivated by the aims mentioned in the previous paragraph, we fol-
low the particles ejected into the flow from a sink on the surface and
with them a portion of the vorticity present at the boundary. We use
the positions along a singularity path as particle source for the gener-
alized streak line integration. Natural start and stop positions for the
particle injection are given by the bifurcations bounding a singularity
path as a singularity is created, destroyed or changes its type there.
Beginning at a creation point or a Hopf bifurcation we move along the
line in time and space, and release particles until we reach the next
bifurcation where we stop releasing particles. However, this does not
mean that the streak line stops its evolution. We continue tracking
the present particles. As the particles move away from their initial
position, the streak line separates from the singularity path. After sep-
aration the streak line still consists only of particles that originate from
the singularity on the surface.

!'Visualization techniques for vorticity transport (diffusion and advection)
where presented by Sadlo et al. [23].



41.2

‘We mentioned above that the singularities on the surface correspond to
3D half-saddles in the volume. It is well known that starting streamline
integration at saddle points in order to obtain separatrices is problem-
atic. It is a standard problem that has to be handled by any implemen-
tation trying to extract the topological graph of a steady vector field.
It is not possible to start the streamline exactly at the position of the
saddle as the velocity is zero there. All implementations have to take a
small step away from the saddle to obtain non-singular starting points
for separatrices.

The singularities we treat have a two-fold nature. They live on the
surface as 2D sinks and in 3D as half-saddles. We have to take a small
step along the unstable manifold living in 3D. A first very simple ap-
proximation is to take the step normal to the surface. Small numerical
inaccuracies introduced by stepping away along the normal vector and
not along the actual unstable manifold, are compensated by the strong
hyperbolicity of the flow along the manifold. All streamlines around
the unstable manifold converge to it. Another possibility is to extract a
singularity of the projected flow on an offset surface having a distance
of one cell layer from the actual surface. The singularity in the pro-
jected flow of this layer is very close to the original singularity. Only
the projected flow vanishes there, the original 3D vector at the position
of the singularity can be used to start a particle’s motion.

The correct direction is given by the eigenvector corresponding to
the largest real eigenvector of the Jacobian of the 3D singularity. To
be able to use this vector the 3D singularity belonging to the 2D sink
has to be identified. This is possible using an interpolation scheme for
incompressible flow proposed by Peikert et al. [20].

As we found it to be sufficiently accurate, our implementation uses
the normal vector direction for the step.

Issues Concerning Starting Particles Near Singularities

5 DATASETS

We present results of applying our methods to four different CFD
datasets in Section 6. The datasets are described shortly in this sec-
tion.

5.1 BMW

The BMW dataset stems from a steady simulation around the right half
of the car while assuming a flow symmetry plane along the middle of
the car. Fig. 4 gives an overview of some of the important features of
the dataset. The red lines represent vortex core lines extracted by the
algorithm of Sujudi and Haimes [25] in the parallel vectors version of
Roth and Peikert [19]. The strongest vortices appear behind the car,
the tires, the side mirror and at the windscreen. We will go into detail
about the relevance of this steady dataset in the results section.

5.2 Draft Tube

This dataset represents the draft tube of a Francis turbine, in which
the runner is spinning in the inlet part of the turbine (see Fig. 3, upper
left corner of left image). The runner induces a spinning motion in the
water, which leaves the turbine (right part of left image) after passing
through the tube. The inlet of the lower part of the tube is split into
two channels. The upper part is dominated by one main vortex, while
the flow develops several distinguished vortices that are connected to
the boundary in the lower part. There are 300 time steps representing
0.4 seconds of physical time available to us.

5.3 Cuboid

The cuboid dataset results from direct numerical simulation of fluid
flow around a cuboid at a Reynolds number of Re = 1000. The simula-
tion was carried out with the NaSt3DGP?2 flow solver. A version of the
NaSt3DGP code, as well as related information and documentation is
available for download at http://wissrech.iam.uni-bonn.
de/research/projects/NaSt3DGP/index.htm. Weused a
slightly modified version of the flow past an obstacle example, which

2NaSt3DGP was developed by the research group in the Division of Sci-
entific Computing and Numerical Simulation at the University of Bonn. It is
essentially based on the code described in a book by Griebel et al. [9].

Fig. 4. Visualization of important vortices around BMW car.
top: Overview of dataset showing car with streamlines started near right
side mirror and vortex core lines. left: Close up with LIC and topology
graph on surface near side mirror. The swirling behavior of the stream-
lines nicely correlates with the vortex core lines. right: Streamlines start
directly from singularities in surface shear stress field.

is also available on the web site. The flow enters the simulation region
with a velocity of /8 ™. The velocity data is stored as a vector field
on a 100 x 100 x 100 rectilinear grid. We use 1355 time steps that
represent 100 seconds of physical time. As can be seen by examining
the stream surface in Fig. 5, the flow behavior behind the cuboid is
quite chaotic. It is dominated by a large number of vortices that orig-
inate from the edges and faces of the cuboid. The LIC texture and the
topology graph on the surface of the cuboid (Fig. 5 middle) show the
footprints of separation structures and the mentioned vortices. The im-
age on the right (Fig. 5) shows the connection between a vortex and its
corresponding attracting spiral node by some streamlines started near
the node. The streamlines lead away from the surface as the vortex
drags particles away from the cuboid.

5.4 Ellipsoid

A flow around an ellipsoid at Reynolds number Re = 10000 was sim-
ulated to obtain this dataset. We use every tenth of the computed time
steps resulting in a total number of 600 steps capturing 3 seconds of
physical time. The surface of the ellipsoid is a triangular grid which
has a cut at the front side shown in the left image of Fig 2. Thus the
surface is homeomorphic to a disc and ready for the application of our
parameterization. The flow around the ellipsoid develops two main
vortices in the beginning (see Fig. 9 left image). These vortices inter-
act and evolve into a more complex yet symmetric pattern. The main
rotation axis of the vortices in later time steps is orthogonal to the axis
of the early vortices. This is nicely depicted by the streak line in last
two images of Fig. 9. We will discuss the evolution of the singularity
streak line in the results section.

6 RESULTS

The aim of our method is to analyze the interaction of the wall shear
stress with the three-dimensional flow. Especially we are interested
in singularities belonging to vortices originating from the wall and the
vorticity transported by the particles ejected from the wall at the singu-
larities. This is accomplished in three steps: surface parameterization,
singularities tracking, and visualization of generalized streak lines and
related structures. The results of the individual steps are explained in
the following.



Fig. 5. Depictions of the flow in the cuboid dataset after 50 seconds of physical time. left: Stream surface showing turbulent behavior behind
cuboid. middle: LIC and topological structures of shear stress field on cuboid. right: Swirling streamlines indicating existence of vortex above

shear stress field sink (sink is located in lower right part of middle image).

6.1 Parameterization

In order to apply efficient tracking algorithms for planar settings the
surface is parameterized and thus can be mapped to the plane. The
2D-mappings of the datasets are visualized in Figs. 1, 2(right) and 7.
For the draft tube the subregion highlighted as triangulated grid in
Fig. 1(a) is parameterized using mean value and LSCM parameteri-
zation. LSCM has a free boundary, whereby the relation to the 3D-
patch is clearly visible. As explained in Section 3.2, LSCM parame-
terization is sometimes not applicable and the mean value parameter-
ization has to be used, which maps the subregion to a disk. Despite
the potential confusion introduced by the parameterization procedure
which can substantially deform the considered spatial region (see Sec-
tion 3.2), visualizing singularity paths in the parameter space allows
for an effective user interaction when combined with the simultaneous
depiction of the selected information directly on the surface.

6.2 Singularities Tracking

After the surface is parameterized, 2D singularity tracks can be com-
puted. As explained in Section 3.4, the visualization of the trajectories
of the singularities directly on the 3D surface can be rather confusing.
Thus, we shift the visualization to the 2D parameter space. The spatial
location is given in 2D and the third dimension is used to encode time,
as visualized in Figs. 1(right), 2(right), and 7.

Moreover, the visualization in parameter space gives a good
overview over the dynamics of the flow. The turbulent behavior of the
cuboid dataset is clearly reflected in the complex topological structure
and its evolution (Fig. 7(e)). Before the turbulence develops, the sin-
gularity paths exhibit a clear, nearly symmetric shape. A large number
of singularities appear suddenly when the flow develops the turbulent
behavior. These effects decay after the flow reaches a certain amount
of turbulence. Displaying the paths of the upper part of the draft tube
in the parameter space (Fig. 1) nicely shows the quasi periodic behav-
ior of the rotating flow as a repeating pattern in the singularity paths
(two layers with the same pattern).

As can be seen in the cuboid example (Fig. 7), the temporal struc-
ture of the trajectories can become very complex, hampering the se-
lection of interesting singularities. We use two different techniques to
enhance the visualization. First, an advantageous color coding can be
used. When looking for boundary induced vortices, sink paths are of
special interest as explained in Section 4.1. The corresponding trajec-
tories are highlighted in a dominant color, while all other singularity
paths are displayed as smaller tubes in a paler color to provide con-
text. If only a certain range of time-steps is of interest, color coding
is employed to highlight temporal intervals (Fig. 7(b)). Second, filter-
ing can be used to extract singularity paths fulfilling certain properties,
e.g., the singularities are located in a certain region, or as in our case,
the trajectories are present for a minimal amount of time. Thus, the
number of trajectories is significantly reduced, simplifying the selec-
tion of relevant singularities (compare Figs. 7(c) and 7(d)). Addition-
ally, it can be useful to show the strength of the vortical behavior along
the paths.

When interpreting the tracking results, attention has to be payed to
the choice of parameterization. In Fig. 1(top/left) the resulting tracks
of mean value and LSCM parameterization are displayed. Insignifi-
cant, spontaneous changes of the singularity type appear in the middle
image along the path of the repelling node in the lower part of the im-
age. Note that this does not mean appearance or disappearance of sin-
gularities. These changes are due to the deformations induced by the
mean value parameterization, and can be prevented using the LSCM
parameterization, which produces smoother results.

6.3 Generalized Streak Lines and Vortices
6.3.1 Steady Vector Fields

We discuss the steady BMW dataset here, because it nicely shows
the connection between the singularities on the surface and the vor-
tex generation in a common real world setting. For a steady vector
field there is no difference between streamlines, path lines and streak
lines. Thus the streamlines shown in the images are identical to streak
lines. Moreover, the streamlines are identical to the singularity streak
lines as singularities do not move in the steady case. The streamlines,
thus, identify regions that are influenced by the particles emanating
from the singularity on the surface and the corresponding vortex. The
vorticity transported with particles is distributed all along the stream-
lines and contributes to the persistence of the vortical behavior or even
to the creation of new vortices in the neighborhood of the streamlines.

Our discussion will focus on the region around the side mirror as it
is quite obvious that vortices develop behind such a protruding part of
the geometry. The lower images of Fig. 4 show a LIC texture and the
topology graph (white lines) of the surface flow near the side mirror.
The orange streamlines originating from the spiral sinks swirl around
the vortex cores lines. The vortex core line belonging to the lower of
the two vortices is not captured completely by the extraction method.
However, at some distance from the surface the streamline nicely re-
sembles the vortex core line.

Fig. 6. Ellipsoid dataset: singularity streak line with volume rendering of
Az-criterion (left) and vorticity (right).

6.3.2 Unsteady Vector Fields

In the unsteady case, a singularity streak line can be computed and
visualized after selecting an interesting singularity path. The images



in Fig. 8 are taken from an animation® of the cuboid dataset that shows
the evolution of the particles emitted from one of the attracting spiral
nodes on the surface. The images show (from left to right) how the
starting position of the streak line moves along the singularity path
(turquoise). In the third image the singularity has become a source
(repelling) through a Hopf bifurcation. Thus, it does not emit any
particles into the 3D flow anymore. We stop particle injection at this
point and allow the streak line to separate from the surface (see last
image). The images cover only a relatively short period of time (24.5
seconds) but already show a large amount of winding and bending
of the streak line, which is due to the turbulent behavior behind the
cuboid.

Additionally, the streak line experiences strong stretching over time.
It covers nearly the complete region behind the cuboid in later time
steps. We do not show an image of such a time step as it strongly suf-
fers from clutter. However, after careful investigation it turns out that
the streak line forms coherent patterns. One can observe the shape of
hairpin vortices in these patterns. In fact, comparison with isosurfaces
of A, shows that hairpin vortices evolve behind the cuboid and are
fully developed shortly before the flow leaves the simulation domain.
It is quite intelligible that the particles of the streak line agglomerate
in a vortex as they transport vorticity and a vorticity concentration is
one of the characteristics of a vortex.

Images from an animation® of our second singularity streak line ex-
ample, the ellipsoid, are shown in Fig. 9. The origin of the streak line,
i.e. the sink path in the lower left part of the images (blue), lies in an
area of low pressure (first two images). The streak line winds around
a region of low pressure in the fourth and fifth image. Low pressure
can serve as vortex indicator in many cases. Indeed the regions of low
pressure in our dataset are co-located with vortices. Fig. 6 illustrates
the vortices by volume rendering of A, and vorticity in comparison to
the streak line.

6.4 Performance

We list the computation time for performing the complete tracking
procedure on our datasets in Table 1. This includes transforming the
vector into parameter space, tracking, sorting of the line segments to
tracks, sorting the tracks by arclength and displaying all paths on the
surface. The computations were carried out on one core of an AMD
Opteron 2210 (1.8 GHz) with 8 GB main memory. Our software is
written in C++ and runs on Linux.

The time cost of the tracking depends on the number of time steps,
the number of singularities and the number of cells. The number of
singularities is of special importance as they are separately tracked
through the time steps of the dataset.

7 CONCLUSION AND OUTLOOK

We have presented methods for singularity tracking on surfaces and vi-
sualization of vortices that originate from walls in three-dimensional
time-dependent vector fields. As such vortices leave singularities as
footprint in the wall shear stress vector field, we combined the sin-
gularity tracking with a generalized type of streak lines by using the
singularity paths as start positions for the particles of the streak lines.
These streak lines show the region of the flow which is influenced by
the vortex belonging to the singularity. Displaying the particles ejected
from the boundary helps illustrating the transport of the vorticity these
particles advect from the boundary. This is important because for in-
compressible flows vorticity is only created at the boundary and is a
fundamental quantity in the dynamics of vortices. Applied to several
CFD datasets the presented methods proved to be applicable and ro-
bust. In accordance with the literature cited in the introduction, fluid
dynamicists told us that they are specially interested in the particles
leaving the surface. Singularity streak lines are of special interest as
they can not be reproduced in experiments.

We plan to extend the applicability of our singularity tracking
method in a way that it can handle arbitrary surfaces. This may be
possible by correctly connecting parameterizations used for tracking

3See accompanying video.

Fig. 7. Singularity paths for right rear cuboid face. (a) Paths in parameter
space. Grey axis indicates time. (b) Sink paths are marked blue and
their radius is increased. Other paths in grey. Sink paths in time interval
of interest highlighted by dark blue in contrast to light blue. (c) Without
highlighting but filtered by length of time of paths. (d) The same with a
larger time threshold. (e) Projection along one spatial axis. Time and
remaining spatial axis shown. (f) Paths directly on the surface of the
cuboid instead of in the parameter space. Interval of interest highlighted.

[ Dataset [ cells timesteps times (sec) ]
Cuboid side face 368 1355 30
Draft tube upper part (Mean) 8.8k 300 26
Draft tube upper part (LSCM) 8.8k 300 32
Ellipsoid (LSCM) 39.4k 400 276

Table 1. Run times for singularity tracking.

in patches that our current method can handle. Atlas-based methods
like the ones mentioned in the related work (Section 2) may be helpful
here. The visualization of the flow that is ejected from the boundary
could benefit from the availability of a good path surface computation
method.
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