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Abstract
In this work, we propose a visual analytics system to analyze deep reinforcement learning (deepRL) models working on the
track reconstruction of charged particles in the field of particle physics. The data of these charged particles are in the form of
point clouds with high-dimensional features. We use one of the existing post hoc saliency methods of explainable artificial
intelligence (XAI) and extend its adaptation to compute saliency attributions for the input data corresponding to the output
of the model. Our proposed system helps users to explore these saliency attributions corresponding to the high-dimensional
input data of the machine learning model and interpret the decision-making process of the model. In particular, we provide
the users with multiple task-oriented components, different types of linked views and interactive tools to analyze the model.
We explain how to use the system by outlining a typical user workflow and demonstrate the system’s usefulness using several
case studies which address specific analysis tasks.

Keywords Machine learning · Particle physics · Explainability · High-dimensional data · Visual analytics

1 Introduction

In recent years, the use of machine learning (ML) algorithms
has witnessed rapid growth in various fields of applications
such as computer vision and natural language processing.
Particle physics, a branch of physics that deals with the prop-
erties, relationships, and interactions of elementary particles
has also seen this trend with respect to the track reconstruc-
tion of moving charged particles. This further influences the
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field of healthcare due to the use of particle therapy in can-
cer treatment. Understanding the trajectories of the charged
particles allows medical experts to focus the energy depo-
sition of these charged particles at a certain depth in the
human body where the tumor is located without damaging
the neighboring healthy cells. Farrell et al. [1] proposed an
image-based method for reconstructing the tracks utilizing
image segmentation and image captioning methods. The use
of point cloud data of the particle hits, which is transformed
into graph data for ML algorithms, has shown promising
results in track reconstruction [2–6].

The ability of these ML models to learn nonlinear fea-
tures enables them to learn complex features from the data,
but it also makes the interpretability and the debugging of
these models difficult. When it comes to the implementation
of these models in the field of healthcare, the interpretability
becomes extremely important. This need for the methods to
interpret ML models has led to the increase in the amount of
researchwork going into the field of XAI. Some of the signif-
icantworks in this area are gradient-weighted class activation
mapping (Grad-CAM) [7] and SHAP [8]. However, a large
portion of the XAI work caters to the analysis of supervised
learning algorithms compared to the analysis of reinforce-
ment learning which is another type of ML. A similar trend
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is observed when we look at the data types these XAI meth-
ods take into consideration. Most of the XAI methods are
implemented on the image and text data compared to point
cloud data.

In this work, we focus on the interpretability of deepRL
models working on point cloud data. Here, the point cloud
data represent the trajectories of charged particles. The task
of the deepRL model is to construct the trajectories of these
charged particles using the point cloud data provided.We use
post hoc saliency mapping methods for the analysis. These
are the methods used for interpreting a pre-trained model. In
our previous work [9], we proposed the adaptation of two
gradient-based saliency methods for the analysis of deepRL
models working on high-dimensional feature data [6]. We
analyze both of these adaptations and use one of these adap-
tations for the analysis of the model considered in this work.
The output of this method is referred to as the saliency
attributions in the paper. We interpret the model using
these saliency attributions produced. The SmoothGrad [10]
method is one of the gradient-based saliencymethods of XAI
to analyzeMLmodels. Gradients inML represent the flow of
data from the output layer to the input. Analyzing these gra-
dients can provide the model developers and the users with
greater insights into the working of the neural networks. Our
previous work [9] mainly focused on the preliminary analy-
sis of the track-reconstruction model based on the saliency
attributions of a smaller subset of the input features using a
number of static plots. In this work, we take the whole set
of input features into consideration. This results in a high-
dimensional data analysis problem. To address this issue,
this paper introduces a visual analytics system leveraging
linked plots, interactivity and dimensionality reduction tech-
niques. The introduced system provides users with the ability
to interactively analyze the deepRLmodel in detail. Themain
contributions of our work are:

• A visual analytics system supporting high-dimensional
saliency attribution data for post hoc analysis of a deepRL
model working on point cloud data of charged particles

• An extension of an existing saliency mapping methods
to high-dimensional input data of a deepRL model

• Description of a userworkflow for thementioned analysis
• Case studies applying the system and the workflow to
support verification, debugging and analysis of a deepRL
model

The rest of the paper is organized as follows: Section 2 con-
tains the related work in the field of visual analytics (VA) for
machine learning algorithms working on high-dimensional
point cloud data. Section 3 gives a brief introduction to the
data and ML model used in this work. Section 4 lists the
requirements based on which the VA system was designed
and developed. Section 5 describes the VA system developed

in this work. In Sect. 6, we describe the user workflow for
the proposed system. Section 7 contains several case studies
demonstrating the usefulness of the system in model analy-
sis. Section 8 contains the qualitative analysis of the system.
Section 9 corresponds to the discussion and conclusion parts
of the paper.

2 Related work

In the last decade, the field of visualization has seen a sig-
nificant rise in the amount of research work dedicated to the
area of VA for understanding and explaining machine learn-
ing algorithms [11]. Many VA systems have been developed
to analyze and understand the input data, the training process
and the ML model after the completion of the training pro-
cess. XAI-based VA systems can be categorized based on the
type ofMLmodels (supervised, unsupervised and RL) being
interpreted and the input data (image, text, depth images,
point clouds, etc.) taken into consideration. Some examples
of XAI-based VA systems working on image data have been
presented by Xuan et al. [12] and Hohman et al. [13]. How-
ever, the ML models taken into consideration in these works
belong to the supervised learning type.When we look for the
combination of RL and point cloud data in the VA field, we
observe that it is difficult to find any literature that addresses
this specific combination. One of the primary reasons for this
lack of implementations is the limited amount of work in the
development of point cloud-based XAI methods. In the fol-
lowing part of this section, we review theXAImethods found
in the current literature for point cloud data.

The methods proposed by Zheng et al. [14] and Zhang et
al. [15] are two of the earliest works toward the interpretabil-
ity of ML models working on point cloud data. Zheng et
al. [14] proposed a method to generate a saliency map for the
input point cloud data of a classification-orientedMLmodel.
Here, the point clouds represent 3D objects such as tables,
humans and airplanes and the ML model tries to recognize
these point clouds. The method assigns a score to each point
in the input data which reflects the contribution of the corre-
sponding point to the model-recognition loss. They further
aggregate the highly scored points to highlight important seg-
ments in the input point cloud data. While the very basics of
the presentation of the importance is similar to some illus-
trations in our work, the very different meaning of the point
clouds in our data results in additional visual representations
which are rather different.

Zhang et al. [15] proposed PointHop, an explainable
machine learning method for ML models performing point
cloud classification where point clouds represent 3D objects.
It consists of two stages. The first stage corresponds to the
local-to-global attribute building throughmulti-hop informa-
tion exchange and the second stage corresponds to classifi-

123



Visual analytics system for understanding DeepRL-based charged particle tracking

cation and ensembles where classifiers such as the support
vectormachine (SVM) and the random forest (RF) classifiers
are adapted to perform classification task on the feature vec-
tor obtained from the first stage. This explainability method
corresponds to the type of XAI methods used in the prepro-
cessing stage of the ML pipeline. Tan et al. [16] proposed
a point cloud-applicable explainability approach based on a
local surrogate model-based method to indicate which com-
ponents in a point cloud representing a 3D object contribute
to the classification. This is based on LIME [17] which is an
explanation technique that explains the predictions of a given
classifier by learning an interpretable model locally around
the prediction.

In recent years, gradient-based saliency methods of XAI
have become a popular tool to analyze a trained model
by highlighting the input features that influence the out-
put of the model. These methods are categorized into
post hoc interpretability methods in XAI. Some of the
prominent gradient-based methods are guided backpropa-
gation [18], deconvolution [19], integrated gradients [20],
SmoothGrad [10], class activation mapping (CAM) [21],
gradient-weighted class activationmapping (Grad-CAM) [7]
and SHAP [8]. Some of the authors have attempted to
extend/adapt these gradient-based saliency methods origi-
nally developed for image data to point cloud data. Gupta et
al. [22] extended vanilla gradients, guided backpropagation
and integrated gradients to explain classification networks
working on point cloud data as well as voxel data repre-
senting 3D objects. The clearest results were obtained for
the integrated gradients method which highlighted the cor-
ners and edges as important features and flat surfaces as less
important. Matrone et al. [23] proposed BubblEX, a multi-
modal fusion framework to learn 3Dpoint features. The point
cloud data considered in this work represents 3D objects.
They extend Grad-CAM for point cloud to generate saliency
maps and interpret the classification network. Schwegler et
al. [24] adapted the integrated gradients method to a large-
scale urban point cloud dataset to get better insight into how
the decision-making process takes place in the model and
what influence the input features have on the output predic-
tion.

However, none of the point cloud-based XAI literature
mentioned so far deals with the explainability of RL mod-
els. In addition, the point cloud data considered in this work
are quite distinct as it does not represent models/objects in
3D but it represents particle hits and tracking these parti-
cle hits leads to forming tracks. In our previous work [9],
we tried to address this issue by proposing XAI methods to
analyze a deepRL model working on point cloud data. We
proposed visual analysis methods adapting integrated gradi-
ents and SmoothGrad methods to interpret a DeepRL model
working on point cloud data. Both integrated gradients and
SmoothGrad methods produced promising results compared

to vanilla gradients by highlighting some of the very impor-
tant features in the input data. However, we considered only
a small subset of the saliency attributions corresponding to
the input features for the analysis. In this work, we look into
the integrated gradients and SmoothGrad methods adapted
for point cloud data in our previous work [9] and select the
best method for analyzing the deepRLmodel working on the
track reconstruction task. In addition, we extend the selected
method by adapting it to the other two input data (the model
takes in three input data). We address the issue of utiliz-
ing only a small subset of saliency attributions for deepRL
model’s analysis by utilizing multiple plots and linked plots
to analyze the saliency attributions corresponding to all the
input features. To further address the issue of visualization of
high-dimensional data, we leverage one of the most adopted
dimensionality reduction methods, t-distributed stochastic
neighbor embedding (t-SNE) [25], which performs better
than other dimensionality reduction methods over a set of
different data types as demonstrated in [26].

3 Data andmodel

In this section, we provide a brief introduction to the data and
the pre-trained model considered for analysis in this work.
For a more detailed explanation about the data, model and
training process, we refer the readers to the work of Kortus
et al. [6].

3.1 Data

The data considered in this work are a point cloud containing
the information of particle hits in a proton computed tomog-
raphy (pCT) scanner [27]. A prototype pCT scanner with a
high granularity digital tracking calorimeter (DTC) is being
designed and built by the Bergen pCT Collaboration [28].
The DTC is a multilayer structure consisting of two track-
ing layers followed by multiple detector/absorber sandwich
layers referred to as the calorimeter layers (see Fig. 1) with
each layer containing multiple strips of ALICE pixel detec-
tor (ALPIDE) silicon sensors [29]. These strips capture the
high-energy protons passing through the patient in an imag-
ing setup, providing the users with both spatial information
of each proton hit and the corresponding energy deposited
by the proton at this location. Hundreds of trajectories, or
tracks, of the protons that enter and traverse the detectors
must be fully and correctly reconstructed from the sensor
hits. Using these discrete tracks, with a corresponding energy
loss, the user can reconstruct in in-vivo, patient-specific 2D
images of the water-equivalent path length or 3D images of
the proton stopping power. These images can be used for
increased treatment accuracy for planning or monitoring of
proton therapy for cancer. Note that a high hit density (i.e.,
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Fig. 1 The general structure of the Bergen pCT system. Image from
Alme et al. [28] (CC BY)

proton intensity) drastically increases the complexity of the
track-reconstruction process.

To be able to understand the comparisons we make
throughout the paper it should be noted that the point cloud
data considered in this paper comes from a simulation of the
actual detector [30]. The actual detector is in the develop-
mental phase. While in the future the model will be applied
to real detector data, the virtual detector data (hits and their
properties) obtained from the simulation are helpful for

developing the tracking model. Additional information such
as the ground truth provided by the simulation makes the
model analysis part much easier. An example of the simula-
tion data generated for the protons is shown in Fig. 2. Given
this point cloud data, the task of the deepRL model is to con-
struct the trajectories or paths of the protons. The hits form
a layered point cloud (due to the use of multilayer DTC to
record data) which is converted into graph data G = (V , E)

where the nodes (V ) of the graph are defined by the centroids
of the hits and the edges (E) connect existing neighboring
hits over subsequent layers in a direction opposite to the path
of the particles [6].

The nodes (V ) of the graph data G are embedded to Vz
using a graph neural network (GNN) to capture the struc-
tural information in the graph data [6]. In particular, the GNN
attempts to capture relations between the nodes in subsequent
detector layers. These embedded data Gz = GNN (−→v ) =
(Vz, E) are used in defining the input data for the deepRL
model as shown in Fig. 3. Each node −→v i ∈ V is parameter-
ized by the energy deposition �Ei , the x and y coordinates
of the pixel position (xi , yi ) and the one-hot encoded 50-
dimensional vector z_enci representing the index of the
detector layer. Thus, −→v i is represented by 53-value vector.
Each edge −→e jk ∈ E is given in spherical coordinates as
radius r jk , azimuthal angle θ jk and polar angle φ jk describ-
ing the connectionof a transitionhypothesis as its parameters.

Fig. 2 Point cloud data of the
simulated protons. This
rendering shows hits of a subset
(2000) of simulated protons
entering the calorimeter layers.
The hits are color-coded
according to the distance from
their entry position into the
detector (z-coordinate)

Fig. 3 Overview of the use of
graph data and the embedded
nodes as input for the
track-reconstruction process
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Fig. 4 Actor-critic architecture of RL

The polar angle φ jk corresponds to the deflection angle of
particles.

In addition to the virtual detector data, the simulation can
provide the actual paths pl of the particles, i.e., the correct
connections of the hits. It is important to note that the model
does not have access to the paths pl , neither during training
nor during inference, because the paths are what the model
should predict. Instead, the paths pl serve as ground truth or
label to check how good the predicted tracks p resemble the
goal.

3.2 Model

Reinforcement learning is a branch of machine learning
where the learning agent learns to perform a set of sequen-
tial actions by interacting with the environment. The learning
agent tries to maximize a reward function by trying out mul-
tiple actions and discovering the set of actions that yield the
maximum reward. This characteristic of RL distinguishes
it from the other two branches of ML referred to as super-
vised learning and unsupervised learning. In this work, we
try to explain the decision-making process of a pre-trained
deepRL model (based on the model proposed in [6]) work-
ing on the track-reconstruction task of the charged particles.
The task of the model is to use the point cloud data of a set
of charged particles captured by the detector layers and con-
struct their trajectories/path/track by tracking each of these
charged particles along these detector layers. The model has
an actor-critic architecture as shown in Fig. 4.

The actor-critic model consists of three parts:

• Feature extraction layers: This is the common network
branch that holds the shared parameters of the actor-critic
model. The features learned from the input data instance
by these layers are utilized by both policy and value net-
works.

• Policy network: Policy (πθ ) refers to the action that a
learning agent takes at a given state. Policy networkyields
for each input data instance associated with a state st a
probability distributionover all the possible actions (a(i)

t ).

In our case, the possible actions refer to the number of
hits belonging to a particular layerwhose features are pro-
vided as the input for the actor-critic model. The action
with the highest probability is chosen as the best possible
action.

• Value network: Estimates the value for the current state
(st ). Here, the value (V π

θ ) refers to the total amount of
reward that the learning agent can expect to accumulate
over the feature starting from this current state.

The shared network architecture of the pre-trained deepRL
model considered for analysis in this work is shown in Fig. 5.
It consists of multiple multilayer perceptron (MLP) layers,
N stacked Transformer encoder and two separate branches
of attention-based decoder for value and policy estimate,
respectively [6]. To track a hit H p

t from detector layer t to
t + 1, the actor-critic model is provided with action features,
observation features and positional encoding with adaptive
receptive field (PE-ARF) based on cosine similarities as the
input. The action features refer to the features of the hits
belonging to detector layer t + 1 in G and Gz that are taken
into consideration by the model and the features of the edges
in G that connect these hits with H p

t . This is represented by
(−→v t+1,

−→e t,t+1,GNN (vt+1)) in Fig. 5. The size of action
features input is (m, 120)wherem is the number of hits con-
sidered in detector layer (t + 1) (m = 4 in Fig. 5) and 120
corresponds to the number of features representing each of
these hits and their corresponding edges connecting them to
the hit being tracked from detector layer t . The observation
features (represented by (−→v t ,

−→e t−1,t ) in Fig. 5) refer to the
features of H p

t in G along with the features of the edge con-
necting H p

t to H p
t−1 in G which is a part of the reconstructed

track p. The size of observation features is (1, 56) where
56 represents the number of features mentioned before. The
policy network of the model outputs the probability distribu-
tion for the input hits belonging to t + 1 and the hit with the
highest probability is chosen as the next hit in the track p.
The direction of the track reconstruction process is opposite
to the path of the particles.

3.3 Saliencymappingmethod

Gradient-based saliency mapping methods generate saliency
maps using gradients. Gradients indicate the change in out-
put value corresponding to a particular class of interest
with respect to the change in input data. In our previous
work [9], we adapted two gradient-based saliencymethods to
explain the decision-making process of the point cloud-based
deepRL model taken into consideration. We demonstrated
the usefulness of integrated gradients and SmoothGradmeth-
ods over vanilla gradients using the saliency maps generated.
However, in this section, we look into the results of these

123



R. N. Mulawade et al.

Fig. 5 Network architecture of
the deepRL model from Kortus
et al. [6] (CC BY 4.0) with
minor modifications in the
notations to suit our description

(a) Energy deposition (b) x

(c) y (d) r

(e) θ (f) φ

Fig. 6 Input values of some of the features belonging to the action features of an example detector layer (x-axis refers to the hits in the detector
layer to which the feature belongs and y-axis corresponds to the value of the input feature). The index marked track on the x-axis refers to the hit
chosen by the model

adaptations of integrated gradients and SmoothGrad meth-
ods to determine the best method for model analysis.

For a deep neural network represented by a function F :
Rn → [0, 1], input x ∈ Rn and its corresponding baseline
x ′ ∈ Rn , integrated gradients are computed as:

MintGrad(x):: = (x − x ′) ∗
∫ 1

α=0

∂F(x ′ + α ∗ (x − x ′))
∂x

dα

(1)

From the above equation, we observed that the input val-
ues have a higher influence on the gradients integrated for
the intermediate inputs when the baseline x ′ ≈ 0 leading
to (x − x ′) ≈ x . We used 2% noise generated for each
input variable in action features as the baseline resulting in
(x − x ′) ≈ x . This indicates that the saliency map gener-
ated by the integrated gradients method depends on the input
values to a great extent. Figure 6 shows an example of input
values of six features of each node considered in action fea-
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(a) Example track 1: Aggregated inte-
grated gradients

(b) Example track 1: Aggregated Smooth-
Grad gradients

Fig. 7 Aggregated saliency attributions corresponding to seven of the action features for two example tracks taken from our previous work [9] (CC
BY). The saliency attributions are aggregated by adding the magnitude of saliency attributions for each detector layer

Fig. 8 Comparison of saliency
maps produced for two input
images (on the left) with the
gradient values normalized to be
between [0; 1]. The values are
plotted using a diverging color
map [−1; 0; 1] �→ [blue; gray;
red]. Each method is
represented in columns. Image
from Smilkov et al. [10]

tures for a particular detector layer.Weobserve that the values
corresponding to the polar radius, r (Fig. 6d) have signifi-
cantly higher magnitude compared to the other five features.
This is reflected in the saliency attributions produced by the
integrated gradients in [9] where polar radius, r is shown to
be highly influential compared to deflection angle, φ. This is
shown in Fig. 7 where the saliency attributions correspond-
ing to each of the seven features taken into consideration are
aggregated for each detector layer.

However, we consider deflection angle, φ to be the most
important feature as it directly defines the trajectory of the
particle. This information is critical in tracking a charged
particle and constructing the corresponding track.

The adapted SmoothGrad method, however, provides bet-
ter results as it relies completely on the gradient values. It
indicates the high influence of deflection angle, φ followed
by polar radius, r (shown in Fig. 7). The SmoothGradmethod
sharpens the gradient-based saliency maps by reducing the

noise in these saliency maps. For a given input I and corre-
sponding output class score Sc of class c ∈ C , the gradients
of class score Sc with respect to input I , Mc(I ) are computed
as ∂Sc/∂ I . The SmoothGrad saliency map MSG for input I
and output class score Sc is computed as:

MSG = 1

m

m∑
1

(Mc(I + N(0, σ 2)) (2)

where N(0, σ 2) represents the Gaussian noise with given
standard deviation σ and m represents the number of noisy
samples of input I generated. The saliency map, MSG has
the same dimension as input, I . Figure 8 shows the compar-
ison of saliency maps generated by SmoothGrad and three
other saliency mapping methods. We use the adaptation of
this method from our previous work [9] to analyze the point
cloud-based deepRLmodel in this work.We extend the adap-
tation of this method to compute saliency attributions of

123

https://creativecommons.org/licenses/by/4.0


R. N. Mulawade et al.

remaining input features consisting of observation features
and PE-ARF. We compute Mact

SG (policy), Mobs
SG (policy)

and MPE−ARF
SG (policy) for action features, observation

features and PE-ARF input data, respectively, taking pol-
icy output into consideration. In our previous work, we
adapted the SmoothGrad method for computing saliency
attributions with respect to the best possible action of
policy output. In addition, we extend the adaptation to
compute saliency attributions corresponding to the value out-
put (Mact

SG (value), Mobs
SG (value) and MPE−ARF

SG (value)) to
allow the users to understand the model through its value
output.

4 Requirements analysis

We developed the VA system based on the user require-
ments acquired during the discussion with around ten experts
belonging to the fields of physics, ML and visualization from
the pCT collaboration. Through the use of this system, the
users from physics intend to understand the working of the
model and verify if themodel is paying attention to the impor-
tant features in the input data during the decision-making
process. They also intend to understand the behavior of the
model when it fails to reconstruct the tracks correctly. The
users from theMLfieldwhich also includemodel developers,
want to understand and debug themodel and they are looking
for assistance in feature engineering during the developmen-
tal phase. Thus, through our system, we try to address the
following requirements:

R1: Provide an overview of the reconstructed tracks with the
possibility to select a track interactively: Since we try to ana-
lyze the reconstruction process of multiple tracks, it is useful
for the users to have an overview of all the tracks recon-
structed. The users can examine the reconstructed tracks and
choose the track of their interest for the analysis through a
mouse-click event.

R2: Visualize saliency attributions corresponding to multiple
input features: When analyzing the reconstruction process
of a track, it is important to take a larger set of saliency
attributions into consideration and provide the users with an
overview and the option to select a subset of the data for
analysis. For example, action features input is represented as
(vt+1,

−→e t,t+1, GNN (vt+1)) with vt+1 consisting of 53 fea-
tures, −→e t,t+1 consisting of three features, and GNN (vt+1)

consisting of 64 features for each hit. Therefore, each hit con-
sidered in action features along with the edge connecting it
to the hit being tracked in layer t is represented by 120 fea-
tures. It is important to consider the saliency attributions of
all these 120 features of each hit when analyzing the model.
Considering only a small subset of saliency attributions is
insufficient.

R3: Allow interactive exploration of saliency attributions:
Interactive tools are one of the important parts of a VA sys-
tem. They help users in analyzing the data in detail. Since
we deal with multiple hits and features, providing users with
interactive tools to explore the data would improve the anal-
ysis process.

R4: Analysis of a single step of the reconstruction pro-
cess: Since the reconstruction of each track involves multiple
steps, the users found it important to analyze these multiple
steps individually. This is important because the analysis of
individual steps allows the users to understand the decision-
making process of the model at different detector layers such
as the tracking layers and calorimeter layers.

R5: Analysis of detector layers of interest in incorrectly
reconstructed tracks: Understanding the decision-making
process of the deepRL model at instances (or at detector
layers) where the reconstruction goes wrong is important for
understanding and debugging themodel. It can also give us an
insight into the input examples where the model finds it dif-
ficult to reconstruct tracks. Thus, many users recommended
having a separate part in the VA system to analyze only these
special detector layers.

5 Visual analytics system

Taking the requirements mentioned in Sect. 4 into con-
sideration, we developed the VA system. We use the tab
functionality to allow the users to easily navigate between
different parts/sections and analyze these parts without the
need to re-apply the dimensionality reduction method and
regenerate corresponding figures for analysis. The system is
divided into two main parts which can be selected as main
tabs (see the top line in Fig. 9):

1. Overall Analysis
2. Wrong Layer Analysis

The main tabs contain multiple components to address
requirement R2. The linked views and the control panel con-
taining multiple widgets provided in these parts are based
on requirement R3. The following subsections explain these
main parts and their components and how they differ from
each other.

5.1 Overall analysis

The Overall Analysis part focuses on the analysis of all the
tracks taking into consideration all the detector layers. It con-
sists of four tabs with corresponding widgets for the analysis
of the model reconstructing the tracks.
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Fig. 9 3D visualization of the reconstructed tracks. This view provides an intuitive way to select the track to be analyzed

• Tab: Reconstructed Tracks
• Tab: Feature Analysis
• Tab: Layer Analysis
• Tab: Saliency Attributions

In the following subsections, we describe the set of wid-
gets (collectively referred to as Control Panel) provided in
the above-mentioned tabs and the remaining components of
these tabs in detail.

5.1.1 Control panel

The control panel provided in each tab (see, e.g., Fig. 10
above marked frames) consists of multiple widgets that help
the users to modify the data which is being visualized and to
modify the way of interaction with the plots present in two
of the four tabs described below.

The Plot data drop-down menu allows the users to switch
between different types of saliency attributions such as
policy-based or value-based saliency attributions. The Track
number (in feature analysis tab) and Layer number (in layer
analysis tab) sliders allow the users to select different tracks
p and detector layers in this selected track p, respectively,
for analyzing corresponding saliency attributions in the con-
nected tabs. TheTrack type drop-downmenu allows the users

to select the types of tracks (correctly reconstructed, incor-
rectly reconstructed or all tracks) they intend to analyze. The
Track number slider is updated to allow only a selection
of the type of tracks being analyzed. The Feature to embed
drop-down menu controls the set of saliency attributions that
are used by a dimensionality reduction method. The Show
track and ground truth checkbox allows the users to indicate
the points corresponding to the reconstructed track and its
ground truth in the 2D plots visualizing the embedded data.

The default color-coding of the 2D plots in linked plots
utilizes a large number of discrete colors to color-code hits
based on their ground truth value. This is useful in identify-
ing tracks in 2D (in projection views) and their corresponding
points in the embedded space (in TSNE plot). However, it is
difficult to differentiate some of the colors due to the very
minute difference between their appearances during inter-
active analysis. To address this issue, we allow the users to
modify the color-coding of these 2D plots. Users can modify
the color codingmechanismof the 2Dplots in the linked plots
using the Switch to single color checkbox. Selecting this
option leads to color-coding of the selected points to orange
and the unselected points to blue teal color. We choose this
pair of colors as it provides good hue contrast to the selected
and unselected points making the interpretability of the plots
better. The Selection mode and the Cross-filter mode drop-
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down menus correspond to the selection operation through
which the plots are linked (the details regarding which of
the plots are linked are provided in the description of cor-
responding tabs below). The Selection mode corresponds to
the type of interaction between multiple select operations in
a single plot. It allows the users to either overwrite or com-
bine or consider the intersection of multiple selections in
a particular plot. The Cross-filter mode drop-down menu
corresponds to the type of interaction between the selec-
tion operations across different plots. It allows the users to
either overwrite or consider the intersection of the selection
operations performed on two different plots. The following
subsections describe the tabs containing these control panel
widgets.

5.1.2 Tab: reconstructed tracks

This tab, which is shown in Fig. 9, includes the visualization
of all reconstructed tracks in three dimensions. It is provided
to make it easier for the users to view and select an inter-
esting track from the set of reconstructed tracks for analysis
and thereby addressing requirement R1. The users can select
the track that they wish to analyze by clicking on one of the
hits belonging to that track. The remaining tabs connected
with the track number will be automatically updated for the
analysis of the saliency attribution data corresponding to this
selected track. The color-coding of the reconstructed tracks
is based on whether they are correctly or incorrectly recon-
structed by the model. Alternatively, users can use the Track
number slider provided in the feature analysis tab to select
the desired track. Figure 9 shows the component visualizing
an example dataset.

5.1.3 Tab: feature analysis

As explained before, the reconstruction of a single track
involves multiple steps. The RL model starts reconstructing
the track from one end and moves to the other end detec-
tor layer by detector layer. The feature analysis tab (see
Fig. 10) deals with the visual analysis of the whole track.
This means the saliency attributions of all the action features
(Mact

SG (policy) and Mact
SG (value)) used in reconstructing the

whole track (in all detector layers) can be visually analyzed.
This is important when analyzing the saliency attributions
of input features such as z_enc and GNN (−→vt ) which are
intended to capture and provide structural information from
the graph data.

The tab contains three plots (marked as A and B with A
containing one plot and B containing two plots) as shown in
Fig. 10 with the option to switch between Mact

SG (policy) and
Mact

SG (value) using the Plot data drop-down menu.

• A: The saliency attributions of the action features of all
the hits taken into consideration by the RL model in
reconstructing a track are embedded in 2D space using
the t-SNE dimensionality reduction method. This use of
dimensionality reduction method allows us to analyze
saliency attributions corresponding to multiple features
instead of analyzing them individually. The default color-
coding of the points in the plots is based on the index k
of the ground truth path pk of the tracks they belong to.

• B (two plots): 3D plot of all the hits taken into considera-
tion for reconstructing the selected track and a projection
of the 3Dplot for interaction. The 3Dvisualization allows
the user to see hits in spatial dimension that correspond
to the points visualized in the embedded space described
in A. The users can use the checkbox to switch between
two projections (front and top) of the 3D plot. The pro-
jection plot on the right is intended for selecting desired
hits.

All the three plots are linked to each other using the selec-
tion operation. This allows the users to interact and examine
these plots simultaneously. The box selection tool allows the
users to select a set of points in one of the 2D plots and
the corresponding points in the remaining plots will be high-
lighted. This tool is available on the top right corner of all
the 2D plots.

5.1.4 Tab: layer analysis

The layer analysis tab in Fig. 11 is intended for the instance-
based analysis of the track-reconstruction model. It specifi-
cally addresses requirement R4 concerning the analysis of
a single step of the reconstruction process. The 3D plots
in the center of Figs. 10 and 11 highlight the difference
between analyzing multiple detector layers together and a
single detector layer in the track reconstruction process. The
users can choose a particular detector layer in the recon-
structed track using the Layer number slider and analyze the
behavior of the deepRL model when choosing a hit from
the detector layer as part of the track. The tab contains the
same set of plots as described in 5.1.3 (marked as A and
B in both). The only difference is, the saliency attribution
data considered. In this tab, we use the saliency attribu-
tions corresponding to the action features (Mact

SG (policy)
and Mact

SG (value)) of a single detector layer for analyzing
the decision-making process of the model.

5.1.5 Tab: saliency attributions

The saliency attributions tab contains the plots to analyze the
saliency attributions of each input feature of the hits belong-
ing to a particular detector layer (see Fig. 12) instead of
analyzing them in the embedded space using a dimensional-
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Fig. 10 An overview of the Feature Analysis tab of Overall Analysis
part of the VA system: A© Saliency Attributions of the features embed-
ded using t-SNE dimensionality reduction technique visualized in 2D

embedded space. B© 3D visualization of all the hits used in reconstruct-
ing a track and one of the 2D projections of this 3D visualization

Fig. 11 Layer-wise analysis of the saliency attributions corresponding to the input action features of a reconstructed track
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ity reduction method. This allows the users to compare the
influence of individual features on the output of the model
based on the corresponding saliency attributions. In addi-
tion, the tab also provides 2D plots to analyze observation
features and positional encodingwith adaptive receptive field
(PE-ARF). This is done by providing two sub-tabs:

• Action features sub-tab
• Observation and PE_ARF sub-tab

The Action features sub-tab corresponds to the analy-
sis of the deepRL model based on the saliency attributions
Mact

SG (policy) and Mact
SG (value). It contains three plots

(marked as A and B in Fig. 12):

• A (two plots): The scatter plot on the right is color coded
based on the saliency attributions corresponding to one
or a set of features from the action features of all the hits
belonging to the selected detector layer. It helps the users
in understanding how the deepRL model pays attention
to the hits in detector layer (t+1) based on one or a set of
corresponding features in action features when tracking
a hit from detector layer t . The drop-down menu Action
feature/s on the left provides the users with the option
to select these features. We use a diverging color map
[-1; 0; 1] to plot the values. The scatter plot on the left
indicates the hit selected by the model (labeled Track
neighborhood) of the selected hit defined by the users
using the Radius slider on the left side of the tab. These
scatter plots are linkedwith pan and zoom functionalities.
This connection provides the users with the information
regarding the location of the hit selected by the model
and the corresponding ground truth when analyzing the
scatter plot on the left.

• B: The bar plot at the bottom is utilized to analyze the
variation in the saliency attributions corresponding to the
action features, (Mact

SG ) of the hit selected by the model,
its ground truth and the hits in the neighborhood of the
hit selected by the model (color-coded with translucent
blue color). The neighborhood is defined by the Radius
slider on the top left and the selected region (marked by
a circle) can be seen in the scatter plot on the left side of
the connected plots described in A.

The Observation and PE_ARF sub-tab corresponds to the
analysis of the deepRL model based on the saliency attri-
butions computed for observation features (Mobs

SG (policy)

and Mobs
SG (value)) and PE-ARF (MPE−ARF

SG (policy) and
MPE−ARF

SG (value)). It provides two plots (as shown in
Fig. 13), one for the saliency attributions corresponding to the
observation features of the hit being tracked and the other for
the saliency attributions of PE-ARF. In this work, we focus

primarily on the saliency attributions corresponding to action
features input.

5.2 Wrong layer analysis

The focus of the wrong layer analysis part is to analyze the
detector layers of interest in the incorrectly reconstructed
tracks. With this part, we try to address requirement R5
regarding the analysis of detector layers of interest in incor-
rectly reconstructed tracks.We investigate the detector layers
where the model has reconstructed the track p incorrectly
and include the detector layer (if present) after which the RL
model deviates from the corresponding ground truth path pl .

This part contains two tabs with each tab containing the
necessary widgets to analyze corresponding saliency attribu-
tion data. The tabs mentioned in Sects. 5.1.4 and 5.1.5 are
used in this part to analyze the saliency data. Figure 14 shows
the layer analysis tab of wrong layer analysis. The Track
number drop-down menu in the control panel consists of
only the incorrectly reconstructed tracks and the Layer num-
ber slider contains the list of all the detector layers where
the reconstruction went wrong and the last detector layer
(if present) until which the reconstruction was correct. The
functions of the remaining widgets are similar to the widgets
mentioned in Sect. 5.1.

6 User workflow

In this section, we describe the user workflow to demonstrate
the working of the VA system. Figure 15 shows an overview
of the user workflow for the Overall Analysis part in the sys-
tem. For the Wrong Layer Analysis part, users follow the
workflow depicted inside the region marked with red bound-
ary.

The VA system starts with the default view of the recon-
structed tracks tab. The users can explore the 3Dvisualization
of all the reconstructed tracks in the data and select the desired
track for analysis by clicking on the track. This interactive
visualization addresses requirementR1mentioned in Sect. 4.

Once the track is selected, users switch to the feature anal-
ysis tab for the analysis of saliency attributions corresponding
to the action features (Mact

SG (policy) andMact
SG (value)) of all

the detector layers of the selected track together addressing
requirement R2. The users are provided with the option to
analyze saliency attributions corresponding to all the fea-
tures of action features or select a predefined subset of these
features.

To analyze a particular detector layer of interest among
these layers of the selected track, users switch to the layer
analysis tab. Here, the users can slide through the list of
detector layers to analyze action features’ saliency attribu-
tions, Mact

SG (policy) and Mact
SG (value), corresponding to a
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Fig. 12 Saliency attributions corresponding to the action features at the chosen detector layer of the reconstructed track

Fig. 13 Saliency attributions corresponding to the observation features and PE-ARF input at the chosen detector layer of the reconstructed track

particular detector layer. The selected dimensionality reduc-
tion technique is used in this tab to analyze large numbers
of saliency attributions. The interactive tools associated with
the figures in all the tabs and the tools provided in the control
panel are designed to address requirement R3.

To analyze the actual saliency attributions Mact
SG (policy),

Mact
SG (value), Mobs

SG (policy), Mobs
SG (value), MPE−ARF

SG

(policy) and MPE−ARF
SG (value) corresponding to the

selected detector layer, users switch to the saliency attribu-
tions tab. The layer analysis and saliency attributions tabs
correspond to the analysis of a single step of the reconstruc-

tion process addressing requirement R4. It consists of two
sub-tabs. In the Action features sub-tab, users can analyze
the saliency attributions corresponding to the action features
input. The Observation and PE_ARF sub-tab contains two
plots each visualizing the saliency attributions corresponding
to observation features and PE-ARF input data. We demon-
strate the user workflow through two case studies in the video
provided as supplemental material.

Reconstructed tracks consist of both correctly and incor-
rectly reconstructed tracks. To study the decision-making
process of the model when it fails to reconstruct the track
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Fig. 14 Wrong layer analysis section. Only detector layers where the tracking deviates from ground truth (plus last correct detector layer) can be
selected here

Fig. 15 User workflow for the proposed VA system

correctly, users switch to the Wrong Layer Analysis tab on
the top of the system. This segment of the system fulfills
requirement R5. They follow the same workflow described
for Layer Analysis tab and SaliencyAttributions tab (marked
by red colored rectangle in Fig. 15) above to analyze the
model.

7 Case studies

In this section, we look at several case studies to demon-
strate the usefulness of the proposed VA system. We focus
on the saliency attributions corresponding to the action fea-
tures input computed for policy output.
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7.1 Case 1: Pattern of saliency attributions with
respect to input features

Aim
To investigate the pattern of positive and negative saliency
attributions and compare it to the pattern observed for ML
models working on other spatial data.

Analysis
For this case study, we select a track and use the layer slider
in the layer analysis tab to choose a particular detector layer
for analyzing the policy output of the model reconstruct-
ing the selected track at this detector layer. We observe that
the saliency attributions corresponding to the action features
(Mact

SG (policy)) of the hits present in the neighborhood of the
hit selected by the model display distinct nature compared to
the this selected hit. Most of the points corresponding to the
hits in the neighborhood of the predicted hit lie on the other
end of the trail of points in the embedded space. An example
of the analysis is shown in Fig. 16 where we select the hits
in the neighborhood of the hit selected by the model in the
Top view plot (on the right side of the figure) and observe
the above-mentioned distinctiveness in the t-SNE plot. To
understand this behavior in detail, we investigate the model
prediction at this detector layer in the Saliency Attributions
tab. In particular, we study the pattern of saliency attributions
corresponding to some of the important features belonging
to action features.

In the SaliencyAttributions tab,we focus on the connected
plots provided on top for our analysis. We observe a pattern
of positive and negative attention in Fig. 17a (neighborhood
of the hit is zoomed-in in Fig. 17b) when we look at the
saliency attributions of feature φ (one of the most important
input features) belonging to the action features of a detec-
tor layer. A similar pattern is observed for the polar radius,
r which is another important feature. Rosynski et al. [31]
also observed a similar pattern of positive and negative gra-
dients when analyzing the usefulness of the gradient-based
saliencymaps in deepRL for image classification.Weprovide
an illustrative example of saliency maps generated for ML
classification model working onMNIST data in Fig. 17c.We
observe that the pixels representing the numbers in MNIST
images (Fig. 17c) have very high positive (with respect to the
influence on the output) attention and they are surrounded by
the pixels having high negative attention. This is similar to
the pattern observed in Fig. 17b. Here, the white pixels rep-
resenting the number in the input MNIST image correspond
to the features of the hit in action features chosen by the
deepRL model in detector layer (t + 1). The black colored
pixels surrounding thesewhite pixels in the immediate neigh-
borhood correspond to the hits (defined by their features in
action features) surrounding the chosen hit in our scatter plot
example.

Result
The observations indicate that the deepRL model is showing
a similar pattern of saliency attributions to that of machine
learning algorithms working on other spatial data, there
image data. This insight supports the idea that the model
is showing an usual behavior when detecting the desired hit.
This case is demonstrated in the video provided as supple-
mental material.

7.2 Case 2: Behavior of themodel when the track
has high deflection angle

Aim
To investigate the action of the model when it fails to track a
charged particle that has high deflection angle at a particular
detector layer.

Analysis
We look into the layer analysis tab of thewrong layer analysis
part to investigate the model behavior when reconstructing
a particular track (selected by choosing the track from the
Track number drop-downmenu) with a high deflection angle
in a high-density region of particle hits. The deflection angle
φ jk is one of the major features of particle hits that defines
the difficulty of the track-reconstruction process of charged
particles. Another important factor affecting the track recon-
struction process is the density of particle hits. An increase in
the density of particle hits increases the difficulty of recon-
structing tracks significantly.Reconstructing trackswith high
deflection angles can be very challenging for both humans
and machines when we are dealing with the data of thou-
sands of tracks simultaneously. In Fig. 18, we try to analyze
the performance of the deepRL model in reconstructing a
track with a high deflection angle at a particular detector
layer. We observe that the model reconstructs a part of the
track correctly but fails when the track deflects with a higher
angle. The RL model follows an approximately straight-line
path in reconstructing the track even at the first few detector
layers (from the top of the 3D plot) after the reconstruction
has gonewrong. Here, the reconstruction process following a
straight-line path is desirable up to the first nine detector lay-
ers from the top but undesirable at the tenth detector layer.
In the absence of the ground truth, it would be extremely
difficult to classify the action of the model at the detector
layer with a high deflection angle as incorrect. Even human
observers would not be able to choose the correct action
and would select the straightest but wrong continuation. This
observation highlights the complexity of the point cloud data.
It also indicates the need for a VA system to understand the
behavior of the model without relying exclusively on the
accuracy value of the model to evaluate its performance.
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Fig. 16 Layer-wise analysis of action features’ saliency attributions corresponding to policy output

Result
Knowing how the model decides wrong suggests specific
changes in the strategy. In this case, it could, e.g., be helpful
to optimize the connection of the hit for all tracks simultane-
ously [6].

7.3 Case 3: Positive gradients versus negative
gradients

Aim
The saliency attributions generated show that the model pays
positive attention to some features and negative attention to
the other features of the selected hit belonging to a detector
layer. The aim of this case study is to understand why the
deepRLmodel has positive and negative saliency attributions
for individual features in (−→v t+1,

−→e t,t+1,GNN (vt+1)).
Analysis
The SmoothGrad method involves computing the gradients
of the output class score with respect to the input data. The
sign of the gradient value indicates the direction in which the
corresponding input value needs to be changed to observe an
increase in the class score. The interpretation of the positive
and negative gradients depends on the characteristics of the
dataset being used. The complexity of the input data makes
the interpretation of these gradients much harder.

We observe a similar ambiguity during the analysis of the
SmoothGrad saliency attributions corresponding to a partic-
ular detector layer computed for the input data with respect
to policy output in saliency attributions tab. We select a track
using the Track number slider in the FeatureAnalysis tab and

choose a layer using the Layer slider provided in the Layer
Analysis tab. Then, we switch to saliency attributions tab to
study the pattern of saliency attributions Mact

SG (policy). The
saliency attributions corresponding to the features r and φ

(see the region marked by red colored rectangle in the center
of Fig. 19) in Mact

SG (policy) have the highest attention for
the hit selected by the model (labeled as track) in the direc-
tion of negative gradients compared to the other hits in the
layer (refer Fig. 19). However, the saliency attributions cor-
responding to feature y (marked by red colored rectangle on
the left in Fig. 19) in Mact

SG (policy) show high attention for
the reconstructed track in the direction of positive gradients
with respect to the ther hits. This difference in the saliency
attributions is due to the properties of the input features. The
features of the hits are quite distinct from each other with
respect to the desired values of these features in selecting a
particular hit. Lower values of deflection angle (φ) and polar
radius (r ) indicate the straightness of the track. Therefore,
having lower values of these features for track reconstruc-
tion is desirable. However, this is not the case with other
features such as energy deposition E or feature x . This dif-
ference in the desired values of the input features results in
model paying attention to these features differently.

Figure 6 shows the values of some of these input features
belonging to action features at a given detector layer and the
index marked track indicates the hit chosen by the model.
Figure 6d, f indicates that lower values of the features r and
φ are desired by the deepRL model when choosing a hit as
the part of a track.
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(a) Saliency attributions corresponding to φ feature of the actionfeatures of hits in a
detector layer.

(b) Neighborhood of the hit selected by the model in 17a

(c) Saliency attributions of five MNIST images computed using SmoothGrad saliency method
with varying noise levels. Image from Smilkov et al.[10]

Fig. 17 Comparison of the pattern of saliency attributions at a detector layer with the MNIST images

Result
We observed that due to the distinctiveness of the input fea-
tures, for some of them high values are desirable for other
low values are desirable, the model learns to pay attention
differently while reconstructing a track. Thus, the issue con-
cerning the interpretation of positive and negative saliency
attributions was successfully verified by analyzing the input
features to understand their corresponding saliency attribu-
tions generated.

7.4 Case 4: Observation regarding GNN embeddings

Aim
GNN embeddings are intended to capture structural informa-
tion in the graph data. Here, the aim is to verify if GNN (v)

captures relations between the nodes in subsequent detector
layers.

Analysis
Here, we analyze the influence of GNN embeddings
(GNN (v)) belonging to Gz that are used in defining the
action features input for the reconstruction model. In partic-
ular, using the Feature Analysis tab from Overall Analysis
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Fig. 18 Incorrectly reconstructed track p (in red)which starts to deviate
from ground truth path pl where pl exhibits a high deflection angle

part, we try to verify if the embedding values capture any
structural information in the graph data G. We select a
track (numbered 55 in this case) using the Track number
slider provided on top the Feature Analysis tab. To analyze
GNN embeddings, we select gnn_emb from the Feature to
embed drop-down menu. We also check both Show track
and ground truth as well as Switch to single color check-
boxes for better analysis. Figure 20 shows the analysis of the
saliency attributions corresponding to the GNN embeddings
in Mact

SG (policy).
During the analysis of clusters, we select a set of points

forming a cluster in the TSNE plot (on the left side of Fig. 20)
for GNN embeddings using the box selection tool as shown
in Fig. 20. The hits corresponding to these selected points
(orange-colored hits in the 3D plot) appear to lie in the neigh-
borhood of the reconstructed track. This is also highlighted
by the Top view plot on the right side.

Result
We observe that the GNN (v) from the graph data Gz does
capture relations between the nodes in subsequent detector
layers. Thus, we successfully verified that the GNN embed-
dings do capture structural information in the graphdata. This
case is demonstrated in the video provided as supplemental
material.

7.5 Case 5: Saliency attributions of features in
tracking layers and calorimeter layers

Aim
To verify if the deepRL model recognizes the difference
between tracking and calorimeter layers and adapts its strat-
egy accordingly.

Analysis
As mentioned in the description of data in Sect. 3, the pCT
scanner consists of two tracking layers followed by multiple
calorimeter layers. We can distinguish these layers in the 3D
plot of Fig. 10. The two tracking layers can be spotted at the
bottom of the scattered points. In this case study, we try to
analyze the influence of action features on the policy output
when reconstructing a track at the calorimeter layer and the
tracking layer. We select a track in Reconstructed Tracks tab
(or in Feature Analysis tab using the Track number slider
provided). Then we move to the Layer Analysis tab to select
a layer. Initially, we select the calorimeter layer adjacent to
the tracking layer and switch to Saliency Attributions tab.
Figure 21a shows the bar plot from Saliency Attributions tab
corresponding to this calorimeter layer. Similarly, we obtain
the bar plot corresponding to the tracking layer (Fig. 21b) by
selecting the tracking layer adjacent to the calorimeter layer
selected.

Using the plots of saliency attributions for action features
from the saliency attributions tab in Fig. 21, we compare the
saliency attributions of these two types of detector layers.
Figure 21a shows a high influence of r and φ (shown in the
region marked by red colored rectangle) features of selected
(by the model) hit’s action features. However, the difference
in attention with respect to other features is not very sig-
nificant. However, Fig. 21b shows a high influence of the
feature φ (shown in the region marked by red colored rectan-
gle) with a significant difference compared to the attention
the other features of the hit selected by the model (labeled
Track) receive at the tracking layer. This observation indi-
cates that theφ feature of action features is significantlymore
influential than other features in tracking layers compared to
calorimeter layers. We observe a similar pattern when ana-
lyzing the saliency attributions corresponding to the value
output of the reconstructing model.

Result
We observed that the model learns to pay significantly higher
attention to the deflection angle, φ, when reconstructing a
track in tracking layers compared to the calorimeter layers.
Thus, we successfully verified the ability of the model to
modify its strategy based on the change in situation.
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Fig. 19 Saliency attributions of the hit selected by themodel, the ground
truth and the hits in the neighborhood (color-coded with translucent
blue) of the hit selected by the model on a given detector layer of an
example track.Note: Themodel reconstructs the track correctly on these

detector layers. Therefore, we have an overlap of points representing
the hit belonging to the reconstructed track and its ground truth. The
use of red boxes is intended only to highlight the region being referred
to in the description of case studies

Fig. 20 Analysis of saliency attributions corresponding to the GNN embeddings in Mact
SG (policy)

8 Expert feedback

The primary objective of our VA system is to assist ML
experts in understanding themodel during the developmental
phase. We utilize visualization tools to make the interpreta-
tion of the ML model easier. To understand the usefulness
and the limitations of the developed VA system, we invited
two experts (Expert1 from ML and Expert2 from the visual-
ization field) to use our VA system. Expert1 is quite familiar
with the data and the model whereas Expert2 is unfamiliar
with the same. We explained the particle tracking mecha-
nism, the tracking model, the data used and the parts of the
VA system to analyze the saliency attributions computed by
adapting the SmoothGrad method.

Expert1 found the overall VA system quite useful in
exploring the large amount of saliency attributions data. He

mentioned that the layout of the system helped him explore
the data in detail as he navigated from the Reconstructed
Tracks tab to the Saliency Attributions tab in the Overall
Analysis part. Due to his familiarity with the data and the
model, he was able to understand the plots without much
difficulty. He appreciated the use of linked plots to analyze
the saliency attributions in the Feature Analysis and Layer
Analysis tabs. He said that the use of the front view and top
view of the 3D plots in these two tabs improved the explo-
ration of the data as they allowed the users to select hits
based on their spatial position. The use of Layer Analysis
and Saliency Attributions tabs helped him get better insights
into the saliency attributions as they deal with the analysis
of a single instance of track reconstruction. In particular, he
found the Saliency Attributions tab very informative due to
the visualization of saliency attributions corresponding to all

123



R. N. Mulawade et al.

(a) Policy output-based saliency; calorimeter layer

(b) Policy output-based saliency; tracking layer

Fig. 21 Comparison of saliency attributions of the hit selected by the
model and the hits in the neighborhood (color-coded with translucent
blue color) in a calorimeter layer and tracking layer for policy out-
put. Note: The model reconstructs the track correctly on these detector

layers. Therefore, we have an overlap of points representing the hit
belonging to the reconstructed track and its ground truth. The use of red
boxes is intended only to highlight the region being referred to in the
description of case studies

the input features at the chosen detector layer. He said that
the system can also be used as a tool for feature engineering.

In addition to the above-mentioned comments regarding
the VA system, he also provided us with some recommenda-
tions to improve the system. He recommended highlighting
the track in Reconstructed Tracks tab when exploring and
selecting a desired track for analysis to reduce the visual clut-
ter. He suggested including a lasso selection tool to improve
the interactivity in the linked plots used in Feature Analysis
andLayerAnalysis tabs.He found the default color-coding of
the points (based on the ground truth) in the 2D plots in these
two tabs to be quite overwhelming due to the use of a large
number of discrete colors. We encountered this issue during
the developmental phase and addressed it by providing users
with the Switch to single color checkbox option. For the 3D
plots used in these two tabs, he recommended further reduc-
tion in the opacity value of the hits taken into consideration
(color-codedwith gray) to improve the visibility of the recon-
structed track and its ground truth. However, reducing the
opacity value also influences the interactions (in linked plots)
as it makes it difficult to differentiate between the selected
and not selected hits. In the Saliency Attributions tab, he rec-
ommended replacing the selection of neighborhood using a
circle centered at the hit selected to a region based on the
incident angle of the track. He also recommended highlight-

ing this region on the scatter plot visualizing the saliency
attributions of PE-ARF. Another important recommendation
was to visualize the output of the models that could provide
additional insights. These recommendations will be a part of
our future work to improve the VA system.

Expert2 liked the overall structure of the VA system. He said
the progressive arrangement of the tabs is helpful in exploring
the data in a structuredmanner.He found the linked plots very
useful in exploring the data. He appreciated the availability
of Selection mode and Cross-filter mode drop-down menus
to modify the type of interaction when using the selection
tool. He also found the use of connected plots to explore data
very useful as the scatter plot on the left side provided context
to the color-coded scatter plot on the left even during the use
of pan and zoom functionalities.

However, due to the complexity of the data and the model
being used for analysis in the VA system, he found it dif-
ficult to interpret some of the plots. This is understandable
as it requires a strong understanding of the data and the ML
model to understand all the plots provided in the VA system.
For the 3D plots in FeatureAnalysis and LayerAnalysis tabs,
he recommended providing users with the option to change
the projection type to orthogonal which would allow them to
distinguish between detector layers easily. The 2D projection
views (Front and Top view) on the right side of these 3D plots
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do address this issue. In future, we will work toward integrat-
ing these views in 3D plots. He also recommended providing
the users with the possibility to use different dimensional-
ity reduction techniques as they could provide different but
interesting insights into the data. However, providing mul-
tiple dimensionality reduction techniques would complicate
the data analysis process due to too many varying insights.
This is one of the primary reasons to provide only one dimen-
sionality reduction method for data analysis in our system.

Based on the detailed feedback of both experts, we derived
the following conclusions:

• The VA system is a useful tool in exploring the saliency
attribution data to understand the decision-making of the
deepRL model and can also be used as a tool for feature
engineering.

• Interaction and visualization of some of the plots can be
improved to improve analysis.

• Providing additional information such as model output
could further improve the analysis.

9 Discussion and conclusion

Previous work in the field of visual analytics has shown
that VA systems can be a very useful tool in understanding
and debugging ML algorithms. The need for such systems
increases when we try to analyze ML models working on
high-dimensional data. Through our work, we try to address
one such need in the field of RL models working on high-
dimensional point cloud data.

9.1 Discussion

The proposed system is designed for the analysis of deepRL
modelsworking on the reconstruction of the tracks of charged
particles. The system takes every input value into considera-
tion to allow the users to analyze the ML model in detail.
It also provides the users with the possibility to analyze
the model using the saliency attributions corresponding to
one of the important input data in two different stages, one
taking the reconstruction of the whole track (consisting of
multiple reconstruction steps) into consideration while the
other provides analysis of single reconstruction step at indi-
vidual detector layers. While the system shows promising
results (demonstrated through case studies) in analyzing the
reconstructionmodel considered, it also has some limitations
associated with it.

Generalizability: We considered point cloud data with mul-
tiple features in this work. The current system can be used to
analyze deepRL models working on similar point cloud data
with varying numbers of features. This property is mainly

useful for model developers in feature engineering of the
input data as pointed out by Expert1 in Sect. 8.

The system uses an adaptation of SmoothGrad, a post
hoc saliency mapping method, for analyzing the deepRL
model. It can be extended to analyze the model using sim-
ilar saliency mapping methods that produce saliency maps
for input point cloud features. One of the important proper-
ties of the SmoothGrad method is that it is model-agnostic,
which indicates that the method is independent of the model
architecture. This property is useful for the model developers
in analyzing the reconstruction model at multiple stages of
model building. In this work, we considered a deepRLmodel
with actor-critic architecture as mentioned in Sect. 3.2. How-
ever, the system can be used to analyze deepRL models with
different architectures or supervised learning models that are
modeled to track charged particles using the point cloud data
described in this work. The system is also applicable to ML
models dealing with other layered point clouds, e.g., time-
based data, where a time step or time slice would correspond
to a layer.

Limitations: In the current implementation of the system, we
consider point cloud data with multiple features to analyze a
deepRL model. The system does not support any other data
formats such as image or text data for the analysis. We also
rely on the ground truth provided by the simulation data for
analyzing the model even though this information would be
missing in the real-world data. Therefore, the VA system is
currently limited to the analysis of deepRL model working
on simulation point cloud data or methods for producing a
different ground truth, like the one by Eschbach et al. [32],
need to be employed.

Another limitation of the system is related to interactivity.
This is corresponding to the limitation of providing only box
selection tool for the selection of points in the linked views
and the inability to select points in 3D plots visualized in the
feature analysis and the layer analysis tabs.

9.2 Conclusion

In this paper, we proposed a VA system to analyze deepRL
models working on the reconstruction of tracks of charged
particles. The system assists the users in analyzing the model
by providing the tools to utilize saliency attributions corre-
sponding to every input data used. We presented several case
studies that provide useful insights into the working of the
ML model taken into consideration and thus showed that the
system can be used by the model developers to verify, under-
stand and debug the model and by end-users to understand
the decision-making process of the model. The qualitative
analysis of the system based on the feedback of two experts
also highlighted the usefulness of the system proposed.
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We developed the system using the high-level visualiza-
tion tools provided by HoloViz [33]. The source code of the
developed system is available at [34].

Our future work will be to implement the recommen-
dations of experts mentioned in Sect. 8 and address the
limitations mentioned above.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00371-024-03297-
3.
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