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Fig. 1. Illustrative stream surfaces in flow above a delta wing (a), a vortex breakdown bubble (b) in the same data, and a vector field
with a closed orbit (c).

Abstract—Stream surfaces are an intuitive approach to represent 3D vector fields. In many cases, however, they are challenging
objects to visualize and to understand, due to a high degree of self-occlusion. Despite the need for adequate rendering methods,
little work has been done so far in this important research area. In this paper, we present an illustrative rendering strategy for stream
surfaces. In our approach, we apply various rendering techniques, which are inspired by the traditional flow illustrations drawn by
Dallmann and Abraham & Shaw in the early 1980s. Among these techniques are contour lines and halftoning to show the overall
surface shape. Flow direction as well as singularities on the stream surface are depicted by illustrative surface streamlines. To go
beyond reproducing static text book images, we provide several interaction features, such as movable cuts and slabs allowing an
interactive exploration of the flow and insights into subjacent structures, e.g., the inner windings of vortex breakdown bubbles. These
methods take only the parameterized stream surface as input, require no further preprocessing, and can be freely combined by the
user. We explain the design, GPU-implementation, and combination of the different illustrative rendering and interaction methods and
demonstrate the potential of our approach by applying it to stream surfaces from various flow simulations.

Index Terms—Flow visualization, Stream surfaces, Illustrative rendering, Silhouettes, GPU technique, 3D vector field data.

1 INTRODUCTION

Flow visualization plays an important role in the design process of
numerous objects in science and engineering. Turbines, air planes,
cars, motors, and buildings are only few examples. Although they are
very different, their durability and usability is influenced by the flow
behavior through or around them. The visualization of 3D vector fields
can help to uncover the flow features affecting these objects. These are
flow attachments, separation areas, and vortices.

The simplest visualization in these cases are streamlines or parti-
cles. However, both lack good cues for depth perception. A widely
used alternative that does not have this disadvantage are stream sur-
faces. An ideal stream surface is a two-dimensional continuum of
streamlines starting from a well-defined space curve. It represents the
area through which virtual particles pass that were released from the
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seed curve into the steady flow. Many variants of algorithms that ap-
proximate stream surfaces can be found in the flow visualization litera-
ture (see Section 2). Despite the fact that naı̈ve rendering of the surface
as a triangulated surface causes much occlusion, only a small fraction
of available literature is concerned with improving the visualization of
the surfaces.

In this paper, we will present an approach for illustrative rendering
of stream surfaces. The field of illustrative rendering mimics tech-
niques used in traditional illustrations with methods of modern com-
puter graphics. The goal is to combine the best of both worlds.
Illustrations have an age-long tradition in the communication of com-
plex knowledge of many different scientific fields, among them flow
research. Here, one of the oldest examples are Leonardo da Vinci’s
sketches of water flow dating back to around 1500. More recent illus-
trations can be found in two textbooks published in the early 1980s
- Dallmann’s thesis [5] and Dynamics by Abraham and Shaw [1].
Constrained by the lack of appropriate computer graphics algorithms
at that time, they managed to break down highly-complex facts into
hand-drawn illustrations of, e.g., vector fields and stream surfaces (see
Fig. 2). Their images are good examples for the main accomplishment
of illustrators in general: simplification of complex contexts, concen-
tration on relevant features, and neglect of details that obstruct under-
standing. Due to the applied abstraction, the resulting images are both
intuitive and esthetically pleasing. Up to now, many flow specialists
still have Dallmann’s or Abraham & Shaw’s images in mind when dis-
cussing flow issues.

The main contribution of our work is a novel way of visualizing
stream surfaces with illustrative methods at interactive frame rates,
such that their overall shape is well-communicated and the flow char-
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Fig. 2. Examples for hand-drawn illustrations.: Dallmann’s illustration of the deformation of a two-dimensional vortical motion (a,top) into a three-
dimensional flow (a,bottom) [5] and a section of Abraham/Shaw’s phase portrait of an undamped pendulum (b) are shown [1].

acteristics on the surface can be clearly depicted. We found the inspi-
ration for our stream surface visualizations in the already mentioned
works by Dallmann and Abraham & Shaw. We apply techniques that
achieve similar appearance, such as contour lines, halftoning, and dif-
ferent cutting elements. With the combination of these methods, we
are capable of producing more intuitively understandable stream sur-
face visualizations. By employing modern computer graphics pos-
sibilities, we can go further than merely generating static text book
images by achieving interactive visualizations of arbitrary stream sur-
faces. Provided interactions are movable cuts and slabs defined either
according to the surface geometry or its flow parameters (along time-
lines, streamlines).
The remaining chapters have the following structure: An overview of
related work concerning stream surface construction and rendering as
well as illustrative flow visualization and illustrative rendering of com-
plex objects in general is given in Section 2. The design decisions and
the applied methods are presented in Section 3. After that, we present
examples of our illustrative stream surfaces (see Section 4) from vari-
ous flow simulations and discuss and conclude our paper in Sections 5
and 6.

2 RELATED WORK

In this section, we give an overview of previous publications related
to the two focal points of our work: stream surfaces and illustrative
rendering. We dedicate a separate subsection to each of these parts
because little work combining these two aspects has been reported so
far.

2.1 Stream Surfaces

As mentioned in the introduction, stream surfaces consist of a contin-
uum of streamlines. However, we will not give an overview of the
large number of approaches to compute streamlines and other integral
lines here. Instead, we refer the interested reader to a state-of-the-art
report by McLoughlin et al. [29].

Stream Surface Construction. Stream surface construction was
introduced to the visualization literature by Hultquist [17]. He pre-
sented an algorithm that approximates stream surfaces with a triangu-
lation of a certain number of streamlines. This approximation can be
refined or coarsened at converging or diverging streamlines by adap-
tively removing or inserting streamlines respectively. Since the in-
troduction of the algorithm twenty years ago, a manifold body of
research on the subject has achieved substantial improvements con-
cerning adaptivity [12, 13], accuracy [12, 38, 40], topological correct-
ness [31, 33, 39, 42], and performance [37].

Stream Surface Rendering. Despite this large body of research
and although stream surfaces tend to produce visual clutter through
self-occlusion, the rendering of stream surfaces has received relatively
little attention so far. One of the first attempts to improve the ex-
pressiveness of stream surfaces were the stream arrows presented by
Löffelmann et al. [27, 28]. In these papers, arrows cut out of the sur-
face emphasize the direction and behavior of the flow represented by
the surface and allow a view through parts of it. Laramee et al. [25]
presented a combination of stream surfaces and texture-based flow vi-
sualization, where the surfaces were rendered with flow-depicting tex-
ture. Only most recent papers on the topic by Garth et al. [12] and
Krishnan et al. [23] address the occlusion problems and perception
issues by transparency combined with timelines on the surfaces. An
earlier paper by Theisel et al. [45] also dealt with occlusion by reduc-
ing the displayed geometry to the intersection of certain meaningful
surfaces. However, their approach can not improve the rendering of a
single surface.

2.2 Illustrative Rendering

Illustrative visualization techniques have the potential to support
scientists in processing and finding new insights into their data.
Striking examples for this can be found in various research fields,
such as biochemistry [51], geology [32], meteorology [19], and
medicine [35, 41, 46]. Literature concerning illustrative flow and es-
pecially stream surface visualization, however, is still rather sparse
and will be summarized in this section. Further, we present work
dealing with the occlusion problem and visualization of complex ob-
jects in general and relate it to our approach. For surveys over stan-
dard non-photorealistic and illustrative rendering methods, we refer to
Strothotte and Schlechtweg [43], Gooch and Gooch [14], and Sayeed
and Howard [36].

Illustrative Flow Visualization. The already mentioned work on
stream arrows by Löffelmann et al. [27, 28] is the only one addressing
illustration-inspired rendering of flow surfaces. Here, the flow direc-
tion can be clearly depicted on the outer surface. Subjacent structures
can be seen through the holes resulting from the cut-out stream arrows.
However, the understanding of the flow on inner surface parts is still
limited. We tackle this problem with interactive cutting elements for
an improved view on formerly occluded structures and the flow they
represent. Further publications deal with 2D flow visualization, such
as Turk and Banks [48] who reproduce streamline placement as seen
in hand-drawn illustrations or Kirby et al. [22] who adapted concepts
from oil paintings. Haloed line renderings - known from traditional
line illustrations - and its application to streamlines (in 3D) have been
presented by Everts et al. [10]. The illustration-inspired visualization
of time-varying volume data has been addressed as well. Svakhine et



al. [44] emphasize structural information in the flow volume by ap-
plying silhouettes and methods from photographic flow visualizations
like Schlieren. Joshi et al. [20] on the other hand give hints on flow
directions by using cartoon techniques, as, e.g., speed lines and strobe
silhouettes. Hsu et al. [16] visualize flow evolution over time by intro-
ducing illustrative methods, such as silhouettes and temporal fading.

Illustrative Rendering of Complex Objects. As already stated
above, in stream surface rendering one main challenge is self-
occlusion and the visualization of several layers. The same is the case
in the field of technical illustration, since its motifs (such as, e.g., mo-
tor blocks, cars) are equally complex. Here, line renderings (depict-
ing several layers) with some degree of surface shading are the most
widely used technique, which we apply as well. Fundamental work
concerning line renderings was presented by Dooley et al. [8] who set
down illustration rules for line renderings: line width, transparency,
and style (e.g., dashing) depict different line characteristics, such as
importance, layering, or silhouette type. Appel [2] discussed haloed
line visualizations to improve depth perception in line renderings. In
our method, we distinguish layers by attenuating the line color with
increasing depth.

Examples of line renderings in technical illustrative visualizations
include the work by Nienhaus and Döllner [30], Kaplan et al. [21],
and Fischer et al. [11], who use several silhouette layers to convey
the inner construction of technical models. Surface shading is either
omitted [21] or unobtrusive methods like transparent rendering [7, 30]
or halftoning [11] are applied. We use halftoning, which is recom-
mended by Dooley et al. [9]. They discuss techniques to efficiently
render nested surfaces and prefer hatching-like surfaces to transparent
renderings [7, 30] because of the improved depth representation of the
layering.

Apart from cleverly combining line and surface renderings, oc-
cluded structures can be displayed with various illustrative composit-
ing techniques. For a complete overview, we refer to Viola and
Gröller [49]. These smart visibility methods differ mainly in the way
they represent occluding structures, i.e. either by deforming the model
(peel-away, exploded view) or by removing them completely (cut-
away view) or to some extent (ghosted view). Only variants of cut-
away and ghosted views are applicable to stream surfaces. Exploded
views are designed for the display of complex models consisting of
various units [3]. Since stream surfaces usually consist of a single part,
exploded views are inapplicable for their visualization. Applying de-
formations, as used in peel-away views [4], to stream surfaces would
also modify the flow information, which may lead to misinterpreta-
tions. Cut-aways and ghosted views [26], however, reveal subjacent
layers and still provide sufficient context information. We modified
the cut-away and ghosted views concept by cutting out sections of the
surface and visualizing these in the context of the whole surface. By
using cuts defined by geometrical properties, inner shape is made vis-
ible. Cutting according to flow characteristics allows to depict and
track flow.

3 ILLUSTRATIVE STREAM SURFACES

3.1 Visualization Design

Requirements. When aiming at an intuitive stream surface visu-
alization, it is essential to identify and capture stream surface charac-
teristics necessary for the viewer to understand the specific flow sit-
uation: First, since a stream surface is an approximation of a seed
line’s evolution over time, the overall shape of the stream surface is
a main clue for understanding the flow. However, stream surfaces
are usually non-trivial surfaces with a high degree of self-occlusion.
Therefore, rendering and interaction techniques must be provided for
the enhancement of shape and depth perception, especially in the case
of usually hidden parts of the surface, such as, e.g., inner windings
or vortex breakdown bubbles. Second, flow features on the stream
surface are of importance, because shape by itself cannot communi-
cate the flow situation completely. Flow direction, courses of time-
and streamlines as well as the location and characteristics of singular-
ities, such as sources and sinks, are of interest. Here, methods must

be taken into account which can depict flow directions on all parts of
the surfaces without leading to visual clutter and thereby impairing the
overall shape perception.

How these are met in traditional illustrations. Both, Dall-
mann’s thesis as well as Abraham & Shaw’s textbook, have the status
of a standard work in the field of flow research. Their images set the
benchmark for our visualizations and their applied illustration methods
serve as the starting point for our rendering techniques. In Figure 2a,
examples of Dallmann’s illustrations show the overall shape by silhou-
ettes and feature lines. Though hidden lines are also drawn at specific
positions. The dashed appearance indicates that they are not visible
from the current point of view. Different textures or colors are used to
help differentiate between the front and backside of the stream surface.
Flow direction is mainly represented by streamlines with arrow heads
drawn onto the surface and contour lines. These are especially useful
when complex flow features appear, such as the sources in Figure 2a
(bottom). Note that streamlines not only give information about the
flow directions, but also about the surface curvature and thereby im-
prove shape perception. The same is the case with the hatching tech-
nique applied in Abraham & Shaw’s illustration (see Fig. 2b): strokes
not only depict the flow direction, but also the torus shape. Cutting
away different parts of the stream surface is a method often applied to
allow insight into inner surface parts (see Section 2.2). In Figure 2b,
the different layers of the torus are represented by successively peeling
away the outer layers. Further, Poincaré sections1 or similar cuts are
used by Abraham & Shaw to show the inner layers and the according
flow direction.

Design decisions based on requirements. Our goal is to en-
hance the visualization possibilities of stream surfaces and support
flow researchers in their investigations by meeting the requirements
discussed above. Since stream surfaces are very diverse concerning
shape, size, and complexity, we do not propose a single visualization
technique applicable to all stream surfaces in general. Instead, we aim
at providing the flow researcher with a tool consisting of a suite of
different illustrative rendering and interaction techniques. With that,
the user can explore and interact with stream surfaces without further
preprocessing and adapt the visualization depending on the currently
observed surface and the flow aspects he is interested in. Thus, in
contrast to the illustrations presented above, we do not only provide
static images, but exploit the advantages of computer graphics and al-
low real-time interaction in 3D. We adapted all techniques to be GPU-
based and thereby allow for a real-time switch between different ren-
dering techniques and a comfortable interaction without delays - even
for large stream surfaces.

In accordance with the demands discussed above, we provide visu-
alization techniques representing the overall shape and flow features:
The basic shape is provided by silhouettes, features lines, and halfton-
ing without introducing too much visual clutter and occluding inner
structures. Flow information on the surface is depicted by illustrative
surface streamlines. The problem of visualizing shape and flow char-
acteristics on inner and usually occluded parts of the stream surface
is solved by introducing movable cuts and slabs. By moving them
interactively, the user can explore the surface shape and the flow it
represents. In the following, the implemented methods are described
and discussed in more detail:

• Silhouettes and features lines depict the main shape of the stream
surface. In addition to the shape information of the front layer,
the silhouettes of the second and rear surface layer give shape
information of otherwise occluded surfaces. With increasing

1Poincaré sections are special cuts used for illustration and analysis of

periodic orbits in dynamical systems. They show the repeated intersections

(Poincaré map) of the periodic orbit with a lower dimensional subspace (e.g.

a plane) and thus enable the depiction of the orbit’s behavior over time [15].

Different patterns of the intersections allow to distinguish different types of pe-

riodic orbits: attracting, repelling, saddle-like and spiraling behavior are com-

mon.



depth, the silhouette colors become less saturated thus more sim-
ilar to the white background color. This depth cue is called prox-
imity luminance covariance [50], mimics atmospheric depth, and
hence allows a distinction between the different silhouette layers.
In contrast to rendering nested surfaces with varying transparen-
cies, this method gives unobtrusive context information, which
can be easily combined with the techniques described below. The
display of the individual layers can be controlled by the user.

• Halftoning is a non-photorealistic shading technique, that we ap-
ply as a discreet way of giving further shape and depth informa-
tion, especially in more complex surfaces. Different colors can
be used for the back and front faces of the surface, which allows
an easier understanding of, e.g., narrow windings. Its advantage
is that it minimizes distraction because colors of subjacent sur-
faces remain unchanged and the depth ordering of nested struc-
tures remains clear. Both can be problematic with the alternative
of transparent surface renderings [9].

• Illustrative surface streamlines are ribbon-like structures with ar-
row heads depicting flow direction and surface shape (similar to
the streamlines in Fig. 2a). Their appearance (e.g. width) and
the number of arrows per streamline can be adapted by the user.
The illustrative surface streamlines are constructed with a GPU-
based method using a geometry shader. For this, a parameter-
ization of the stream surface is necessary. In contrast to dense
texture-based visualization techniques [25], this method allows
the depiction of flow direction on the surface without occluding
inner structures.

• Cuts are represented by interactively movable lines, which are
useful for the exploration of the surface shape and the flow it rep-
resents. The cuts are either defined based on geometry or on the
flow parameters s and t given for each surface vertex. Geometry-
based cuts correspond to the intersection line of a user-defined
cutting plane and the stream surface. This provides insight into
the inner shape of the surface and Poincaré sections can be vi-
sualized for periodic orbits (see Fig. 13). Flow parameter-based
cuts on the other hand represent single streamlines (defined by an
s-isovalue) and timelines (defined by a t-isovalue). By moving
these parameter-based cuts, either timelines on the surface can
be tracked over time or streamlines can be explored for different
starting points. The flow direction on the cuts can be depicted by
additional arrow heads.

• Slabs are an extension of the cuts in the sense that - instead
of lines - stream surface sections of user-defined width are dis-
played. Analogously to the cuts, a geometry-based slab results
in a straight section through the stream surface (see Fig. 1a,b),
whereas a flow parameter-based definition produces a strip of
streamlines or timelines respectively. By moving the parameter-
based slabs, the user can track the flow over the stream surface
(either by following timeline strips over time or by observing
streamline strips for different starting points), which is not pos-
sible with existing methods so far. The rendering techniques de-
scribed above (silhouettes, feature lines, halftoning, illustrative
surface streamlines) can be applied to these slabs as well, which
enhances shape perception in comparison to cuts.

3.2 Method Description and Implementation

To provide the proposed real-time interactivity, the previously pre-
sented visualization design is implemented on the GPU. An overview
of our algorithm is given in Figure 3. It consists of several prepara-
tion steps (indicated by the gray boxes) and one final composition step
(blue boxes). The user can combine the desired visualization features
during runtime. According to these user specifications, the preparation
steps are executed. The intermediate results, which are, e.g., silhou-
ettes, surface, or slab style, are rendered into textures and made avail-
able to the shader performing the final composition in image space.

The blue boxes in Figure 3 depict this shader’s workflow and show
that the different features are assembled from back to front.

Some techniques are based on the geometrical features of the stream
surface whereas others need flow parameter information (e.g., illustra-
tive surface streamlines or the flow variants of the cuts and slabs).
These parameters are delivered to the shaders as the stream surface’s
texture coordinates. In the following, the different visualization fea-
tures and their implementations are explained in more detail.

Fig. 3. Overview over the required rendering steps. The gray boxes re-
semble the intermediate results of the preparation steps for the different
illustrative features. The textures are delivered to the final composition
stage (blue boxes). This shader assembles the scene from back to front.

3.2.1 Silhouettes

Silhouettes are the main cue for shape recognition of 3D objects and
are well-suited to give context information when used with other meth-
ods, as, e.g., shading techniques. According to Gooch and Gooch [14],
silhouettes are defined as points on a (smooth) surface with normals
perpendicular to the viewing direction. With polygonal models, how-
ever, silhouettes can be approximated as edges being part of a front-
and a back-facing polygon. With this definition, the contour lines sep-
arating the model from the background as well as internal silhouettes
can be described. Further feature lines necessary for shape recognition
are creases (discontinuities on the surface, such as the edges of a cube)
and border lines (edges belonging to only one polygon). They occur
in non-closed meshes and thus also in stream surfaces.

Silhouette Detection. Isenberg et al. [18] gives an overview over
silhouette detection algorithms and divides them into image-space,
object-space, and hybrid algorithms. They differ in performance, pre-
cision, and the resulting appearance of the silhouette. Since we aim
to achieve interactive frame rates, but do not require stylized silhou-
ettes or subpixel precision, we base our silhouette detection on the



hybrid algorithm of Decaudin [6]. This algorithm has become a stan-
dard method, because it detects all silhouettes and feature lines and
solves the hidden line problem implicitly. Here, silhouettes are deter-
mined based on depth changes (mainly for outer contour) and normal
discontinuities (mainly for internal silhouettes) in the scene. We im-
plemented the algorithm with two rendering passes. In the first pass,
the stream surface’s depth values are stored in a depth texture whereas
the transformed normals are stored in a normal texture. The latter is
an RGB-texture containing a pixel’s normal vector as its color value.
In the second pass, silhouettes are detected in these textures: A So-
bel edge detection filter is applied to the depth texture calculating the
depth gradient for each pixel. If this gradient exceeds a certain thresh-
old, the pixel is classified as silhouette. In the normal texture, silhou-
ettes are detected by checking for normal discontinuities, i.e. normals
of neighboring pixels are not parallel. Thus, for every pixel the dot
product of its normal with the normals of its four direct neighbors is
computed. A dot product smaller than one indicates that two normals
are not parallel. Thus, if the sum of these four dot products drops be-
low a certain threshold (we used 3.95), a discontinuity in the surface
and by that a silhouette is detected. The final silhouette result is stored
in a texture, which is initialized with white and set to black for all pix-
els classified as silhouette either in the depth or in the normal texture
(Rear Silhouette and Front Silhouette in Fig. 3).

Layer Management. The general silhouette detection presented
in the last paragraph can be used to capture silhouettes from differ-
ent surface layers (front, second, and rear; see Fig. 4). For that, the
normals and depth values of the designated layer have to be rendered
into a texture in the first pass. This is controlled by appropriate depth
tests. For the front layer, the standard z-buffer test is used. The rear
surface is captured by rendering only fragments with the highest depth
values by changing the standard z-buffer depth test from GL LESS to
GL GREATER. For the second surface layer depth peeling [30, 11] is
applied. For that, each fragment of the stream surface has to pass two
depth tests. It has to be at a greater depth than the front layer. This
peels away all fragments of the front layer. After that, the remaining
fragments have to pass the z-buffer test. Together, this results in the
rendering (and silhouette detection) of the second layer.

Fig. 4. The different silhouette layers. Upper left shows the scene layout
and the computed silhouette layers: front (orange), second (dark blue),
and rear layer (light blue). The other three images show the intermediate
results of front (upper right), second (lower left), and rear surface layer
(lower right) of a stream surface of the delta wing dataset.

3.2.2 Halftoning

Halftoning traditionally denotes the preparation of newspaper images
for black-and-white printing. Continuous tone images are reproduced
by filling small resolution units with black dots of varying size. For
modern graphical output devices, these resolution units are composed
of pixel areas of varying size (n×n). Different tones are achieved by
controlling the number of pixels set in this unit according to a specific
pattern (ordered dithering). Similarly, halftoning can be used for sur-
face shading. Here, the pixels of predefined areas are set depending
on the current lighting. One advantage of this shading technique is
that only a portion of the surface pixels are set, such that subjacent
structures are still visible and their colors are not modified.

We apply the procedural screening technique described by
Strothotte and Schlechtweg [43]. In contrast to, e.g., ordered dither-
ing, there is no need to provide the pixel pattern (called dither screen)
as input texture. Instead, the dither screen is defined by a dither ker-
nel τ(u,v) and a mapping function M(x,y). The dither kernel controls
the appearance of the halftoning texture, whereas the mapping func-
tion defines its scale and orientation in image space. The technique
is implemented as follows. First, a pixel’s image space coordinates
(x,y) are transferred to dither texture coordinates (u,v) by applying
the mapping function M.

(u,v) = M(x,y) = (
x′ mod n

n
,

y′ mod n

n
)

with (x′,y′) = Rα · (x,y)

(1)

where Rα is a rotation matrix, that we use to achieve a slightly tilted
appearance of the halftoning pattern. To obtain valid dither texture co-
ordinates (u,v), the result is clamped to [0,1] by taking into account
the user-defined texture side length n (values from two to four lead to
good effects). The dither kernel τ(u,v) assigns a halftoning thresh-
old to each dither texture coordinate (see Equation (2)). Icross is the
intensity threshold for the switch from parallel lines to crossed lines.
Finally, for each pixel the current lighting intensity is compared with
the threshold at the corresponding dither texture position. The pixel is
set, if the lighting falls below the dither threshold (see Equation (3)).

τ(u,v) =

{

Icross · v, u ≤ Icross

(1− Icross)u+ Icross, else
(2)

pixel(x,y) =

{

1, Ipixel(x,y) < τ(u,v)
0, else

(3)

For the lighting, we use the non-linear shading model of Krüger et
al. [24]:

I = alam +

(

L ·N +1

2

)

α

·dldm (4)

L is the lighting direction at one surface point, N is the surface nor-
mal. The terms al , am and dl , dm describe the ambient and diffuse
lighting and material intensities respectively. Similar to a gamma cor-
rection, the accentuation of different tones can be controlled with α .
For α < 1, the middle tones are emphasized and the light and dark
tones are compressed, leading to a rather uniform result. For α > 1,
more contrast is achieved since light and dark tones are accentuated.
With this shading model, the appearance of the halftoning can be ad-
justed without changing the dither kernel characteristics. The result
of this rendering step is stored in a texture (Halftoning in Fig. 3) and
provided to the final composition shader.

3.2.3 Illustrative Surface Streamlines

Illustrative surface streamlines are ribbon-like streamlines with arrow
heads, which indicate flow direction and singularities on a stream sur-
face (see Fig. 2a). A stream surface is a continuum of streamlines
starting from a seed curve and extending over time. Information about
the represented flow is given by a parameterization of the surface (ad-
ditional scalar values for each vertex). The parameter t depicts time
and increases along the streamlines. The parameter s increases along
the seed curve (see Fig. 5). We utilize a geometry shader to detect
the isolines on the stream surface and create the ribbon-like geome-
tries along these lines. A geometry shader is executed in the rendering
pipeline between vertex and fragment shader and is capable of emit-
ting new geometry derived from the input primitives. In our case, the
shader receives the stream surface triangles, the corresponding flow
parameters s and t for every vertex (transferred as texture coordinates),
and user-specifications concerning the number and appearance (width,
number of arrow heads) of the streamlines as input. Its output are trian-
gles representing the illustrative surface streamlines evenly distributed
over the stream surface. For further use in the final composition stage,
the newly created geometry is rendered into a texture by the fragment
shader (Surface Streamlines in Fig. 3).



The streamline construction itself is implemented in the geometry
shader as follows (see Fig. 5, middle part). A streamline is an iso-
line defined by a specific s-parameter value sribbon (resulting from the
user-defined number of streamlines and the s-parameter range of the
surface). Each triangle (purple in Fig. 5) is tested whether its edges
cross one of the streamlines to be constructed. If a crossing edge is
detected, the position and t-parameter of its cutting point c with the
streamline is computed. If two cutting points c and c′ per triangle
are detected, their connecting edge represents a section of the ribbon’s
centerline (green line). For every such centerline section, the respec-
tive ribbon segment is generated by forming a trapezoid such that the
triangles (green) border the current triangle and are parallel to the cen-
terline.

Two special cases have to be handled. First, the centerline might
coincide with triangle edges (see Fig. 6a). In this case every cen-
terline segment is visited twice because of its two adjacent triangles
(large yellow). To avoid that the surface streamline section is gener-
ated twice, only the segment inside the current triangle is generated
(blue triangles with yellow border). Gaps occur at triangles (large red)
with only one cutting point. For these, appropriate triangles have to
be emitted by the shader (blue triangle with red border). The second
special case is the handling of diverging streamlines. This occurs at
positions where the mesh resolution changes and a triangle has three
cutting points (see Fig. 6b). The cutting points must be correctly trans-
formed into a branching (red line) or else the two neighboring stream-
lines are connected. This leads to a loop and an interruption of the
correct streamline course (red dashed line).

Fig. 5. Construction of illustrative surface streamlines. The light gray
grid represents a parametrized stream surface (parameter t depicts
time, parameter s increases along the seed curve). A complete illus-
trative surface streamline is shown in the top part. In the middle, the
streamline construction is shown. The edges of a triangle (purple) are
checked for crossings with a streamline (defined by sribbon). The cutting
points (such as c,c′) define the centerline (green) of the streamline and
two new triangles (green) form the final streamline segment. Then, ar-
row heads are added (bottom). The interpolated t-values ti, ti+1 of the
cutting points are checked, whether an arrow head (at position tarrow)
needs to be added between them. If yes, the exact position of the arrow
head on the streamline is determined (by interpolation) and two trian-
gles (yellow) forming the arrow are created.

The arrow heads for the illustrative surface streamlines are gen-
erated analogous to the ribbons. The position tarrow of an arrow
head results from the user-defined number of arrows and the known
t-parameter range. For every centerline segment, it is queried whether
tarrow should be between ti and ti+1 of the two cutting points (see
Fig. 5, bottom). If this is the case, the arrow’s center point on the
streamline is derived by interpolation. The arrow head itself consists
of two triangles defined by the center point and the given arrow width.

(a) (b)

Fig. 6. Special cases. (a) The centerline might coincide with triangle
edges (large yellow triangles). To avoid that the ribbon segment is gen-
erated twice, only the part in the current triangle is drawn (blue triangles,
yellow border). To avoid gaps at positions with triangles (red triangle)
with one cutting point, appropriate triangles are inserted here (blue tri-
angle, red border). (b) Diverging streamlines cause changes in mesh
resolution of the stream surface. The blue triangle has three cutting
points, which need to be transformed into a branching instead of the
connection of neighboring streamlines (dashed red line).

3.2.4 Movable Cuts and Slabs

Cuts and Poincaré sections are used in illustrations to give insight into
hidden parts of a stream surface. We apply and enhance this visual-
ization technique by making it interactive, expanding it to slabs, and
providing two variants, a geometry-based one to explore the shape and
a parameter-based one to observe the flow. The difference is also de-
picted in Figure 7.

Fig. 7. A geometry-based cutting plane is defined based on the Carte-
sian coordinate system (depicted in red, in 2D for simplicity). The red
slab is an example for a geometry-based cutting plane moving along the
x-axis. A parameter-based cut is defined based on the s- or t-parameter.
Thus, it is either oriented along timelines (yellow) or streamlines (blue).

Cuts and Poincaré Sections. The two-dimensional cuts are
constructed with the use of a geometry shader. Its inputs are the
surface triangles, the current cutting mode (i.e. parameter-based or
geometry-based) and a position on the desired main axes - both spec-
ified by the user. The cut detection itself is analogous to the sur-
face streamline detection in Subsection 3.2.3. Each triangle is tested
whether its edges cross the predefined cutting plane. If two cross-
ing edges are detected for a triangle, the cutting points are determined
and connected. The shader output is a line strip resembling the cut,
which is rendered into a texture (Cut in Fig. 3) by the fragment shader.
The geometry-based and parameter-based approaches differ only in
the vertex information that is used for the query (either vertex coor-
dinates or flow parameters). Our implementation of Poincaré sections
are a special case of the geometry-based cuts. Here, a periodic orbit
can be investigated by moving a cut around the orbit in a circular way.



Therefore, the position of the cut is defined by an angle (geometry
shader input) instead of a location along the main axes.

A further feature of traditional illustrations are arrows depicting
flow direction on Poincaré sections (see Fig. 2b). We reproduced this
and applied it to our cuts. The contour arrows are generated in a sep-
arate geometry shader, which distributes them evenly on the corre-
sponding cut according to a user-defined arrow density. The direction
of the arrow heads is computed based on the t-parameter gradient at a
specific position (Contour Arrows in Fig. 3).

Slabs. A slab is an extension of the cut and represents a wider,
interactive surface slice. It is rendered with the same techniques as the
complete stream surface (as described in the Subsections 3.2.1-3.2.3)
to enhance shape perception of the slab. The computation of the slabs
is accomplished in the fragment shaders of the respective techniques
by discarding all fragments positioned outside the slab (given by user-
defined position and width). Thus, analogous to the complete stream
surface, intermediate results for the slab style (halftoning and surface
streamlines), and for the slab silhouette (all depicted in Fig. 3) are gen-
erated and used in the final composition. Again, the parameter-based
and geometry-based versions differ only in the vertex information that
is used for the clipping decision: either the vertex coordinates or its
flow parameters.

4 RESULTS

In this section, we apply the presented methods to a number of com-
plex datasets and provide performance numbers for all examples.

4.1 Delta Wing

Fig. 8. An overview of the delta wing dataset with two stream surfaces.

Our first examples are two stream surfaces from a simulation of air-
flow around a single delta-type wing configuration. The dataset was
computed in the context of numerical research of vortex breakdown.
Its main features are a system of vortices and vortex breakdown bub-
bles with recirculations zones above the wing. The rendering of the
surfaces is heavily influenced by the complex flow situation. The recir-
culating flow in the breakdown bubbles (Figure 9) as well as the rolling
up of the vortices (Figure 8) lead to a high degree of self-occlusion of
the surface.

Conventional visualization of the breakdown bubble using trans-
parency and coloring in the t-direction is presented in the images of
Figure 9a,b. The first image clearly shows that the surface is strongly
folded and the bubble is built up of many layers. The second image
provides information about the flow direction on the outer surface by
varying the color along the streamlines. However, the flow direction is
quite unclear in both images. It is very hard to distinguish the different
layers and to follow the flow when inspecting the translucent surface.
Figure 9d shows how our illustrative rendering combines silhouettes
and halftoning (to provide context) with an s-parameter-based slab.
The latter is a continuum of streamlines conveying the flow direction
on several layers over time. The user can see that the flow enters on
one side (lower left corner of the image) and curls its way through the
bubble before leaving it again on the other side (upper right). This im-
age does not show all layers as this would be confusing in this type of
illustration. Using an interactive geometry-based slab as in Figure 9c
and Figure 1b is the alternative we provide to inspect the different

layers nevertheless. They are clearly discernable in both figures and
reveal the inner structure of the bubble that was hidden in the previous
depictions. See the comparison in Section 5 for the best alternative.

Figure 10 strikingly demonstrates that we achieved the goal to come
close to hand-drawn pictures from text books: our illustrative visual-
ization has the same streamlines with arrows, silhouettes, and halfton-
ing. It even allows the illustration of the vortex at the back part of the
stream surface. The hand-drawn images definitely emphasize the im-
portant features. The comparison ensures that our rendering is at least
as expressive as the illustration by Dallmann.

Finally, Figure 1a and Figure 11 show exemplary illustrative ren-
derings for a surface covering both vortices. Figure 11a uses the con-
tour of the surface combined with a geometry-based cut (orange) and
halftoning. It is enhanced by showing the direction of the flow by il-
lustrative surface streamlines (gray). The main features of the vortices
are more prominent in this image than in the transparent surface ren-
dering of Figure 8. Figure 11b provides insight into the inner flow
along the streamlines of a vortex. A visualization with a geometry-
based slab as in Figure 1a on the other hand depicts the inner shape
and windings of the vortices. All in all the combination of the pre-
sented techniques yields views into the inner structure of the vortical
features of this dataset that have not been possible before.

(a) (b)

(c) (d)

Fig. 9. Comparison of four different renderings of the same stream sur-
face depicting a vortex breakdown bubble of the delta wing dataset:
Translucent (a), color-coded t-parameter (b), illustrative with geometry-
based slab (along x-axis) showing the different folded layers of the
stream surface inside the bubble (c), and illustrative with parameter-
based slab (d). The occasional gaps in the halftoning result from flipped
normals or holes in the surface.

4.2 Closed Orbit

In contrast to the previous example, the closed orbits used in this sec-
tion are created synthetically. However, it is well known that such
orbits exist also in real world computational fluid dynamics data [34].
In our case, we can see a closed or periodic orbit as a streamline that
is closed, i.e. that runs in a cycle, passing the same positions in space
over and over again. In all cases presented in this section, the closed
orbits act similar to sinks, i.e. streamlines from nearby are attracted.
The stream surfaces are all started from circles as seed lines. A non-
attracting version is illustrated by Abraham & Shaw as reproduced in
Figure 2b. They show stream surfaces with stream arrows together
with a flow cross section depicting the movement of the recurring
streamlines, that is a Poincaré section.

Our techniques are able to illustrate the characteristics of the flow
by using slabs and surface contours in Figures 1c and 12. Both im-



(a) (b)

Fig. 10. Dallmann’s illustration (a) compared to our visualization (b) of a
stream surface for the delta wing.

(a) (b)

Fig. 11. Delta wing: Stream surface with illustrative surface streamlines
(gray) and a cut (orange) showing the rolling up of the surface (a) and
a similar stream surface with a slab representing a continuum of neigh-
boring streamlines showing the flow in the inner part of the vortex (b).

ages in Figure 12 show parameter-based slabs along streamlines. In
Figure 12b further information about the flow direction is given by il-
lustrative surface streamlines. These visualizations unfold their value
best when moved interactively by the user. Nevertheless, they provide
a good overview of the flow also in still images. Both nicely show the
nesting, twisting, and swirl of the stream surface and thus the flow.

As we already mentioned, Poincaré sections are a valuable tool for
the analysis of closed orbits. Figure 13 shows our illustrative analog
applied to one of our datasets. The nesting of the surfaces as well as
the attracting nature of a closed orbit are clearly visible in the flow
cross section. The arrows give the needed hints to the direction of the
flow along the rendered contours. In the case of very tight windings,
the structure is a bit clearer without the vectors. But even then, we
leave this up to the user who can switch the arrows off and on (e.g.
when viewing a close-up) during their exploration of the surface. The
widespread use of Poincaré sections in the fluid dynamics community
makes our visualization intuitive and easy to use for domain experts.

4.3 Combustion Chamber

A simulation of the flow in a combustion chamber serves as data for
the stream surfaces in this subsection. This kind of chamber is used
in central heating systems for houses. While exhaust gas exits the
chamber on the right end (see Fig. 14), an inlet for the gas is situated
on the opposite side (blue in Fig. 14). Nine inlets for air are distributed
along each of the side walls. This construction leads to a high degree
of turbulence and many vortices and singularities in the vector field.
The turbulence is desired to achieve the good intermixture of air and
gas needed for combustion.

We computed stream surfaces from two three-dimensional spiral
saddle points (see Fig. 15). The seed lines were chosen to lie in the
unstable manifolds of the saddles. Thus, both stream surfaces move
away from the saddle points in a spiraling manner. In the images,
this behavior is illustrated by augmenting the surfaces with two of the
proposed techniques: illustrative surface streamlines and slabs. Both

(a) (b)

Fig. 12. Twisted closed orbits with parameter-based slabs along stream-
lines. In image (b) flow direction is depicted by additional illustrative
surface streamlines.

Fig. 13. Twisted closed orbit. Poincaré section-like flow lines in a slice
orthogonal to the main flow direction. The close-ups show the same
position in the orbit and a detail with contour arrows.

techniques nicely illustrate the divergence and rotation and thus the
nature of the saddle point. The slab additionally allows the user to
follow a part of the flow even into hidden layers of the surface. Espe-
cially in Figure 15b, one clearly sees how the stream surface returns to
an area close to the saddle point. A t-parameter-based slab is applied
in Figure 15a displaying a continuum of timelines, i.e. shows where
seeded particles are at a certain point in time. Note that the slab is
interactively adjustable in width and position, allowing for an intuitive
exploration of a slice of timelines over the complete surface.

4.4 Performance

Interactivity is an important prerequisite for a comfortable exploration
of stream surfaces. We measured performance of our illustrative ren-
dering approach for the previously presented datasets in low (800x600)
and high resolution (1800x1000) on a computer with an Intel Core 2
Quad Q9450 CPU and an Nvidia GeForce GTX 260 graphics card.
The frame rates are listed in Table 1 and show that interactivity is

Fig. 14. An overview of the combustion chamber with streamlines and
color coded velocity magnitude on the boundary (white to blue). Be
aware that the colors are paler in the image than in the color bar due to
the translucency.



(a) (b)

Fig. 15. Two stream surfaces starting at spiral saddles (unstable mani-
folds) in the combustion chamber dataset. Each image has arrows along
the streamlines and a slab along the timelines (a) or the streamlines (b)
respectively.

Table 1. Frame rates (in frames per second) in low (800x600) and high
resolution (1800x1000) for the datasets presented in Sections 4.1 to 4.3.

Dataset (Figure) #Vertices FPS (low res.) FPS (high res.)

Delta wing

1a 33k 168 89

10b 37k 116 71

11a 37k 125 70

11b 37k 153 85

Breakdown Bubble

1b / 9c,d 133k 88 61

Closed Orbit

1c 396k 40 22

12a 388k 42 26

12b 396k 37 20

13 396k 58 44

Combustion Chamber

15a 124k 69 36

15b 47k 85 57

achieved for all examples. Naturally the performance decreases with
higher resolution and larger models (such as the closed orbits), but still
allows comfortable exploration.

5 DISCUSSION

Comparison with Existing Methods. Although the results sec-
tion already compared our methods to previous approaches, we would
like to emphasize two points. First, the only techniques providing a
similar depth of insight into the structure of vortex breakdown bubbles
is the work by Tricoche et al. [47]. They, however, used a combination
of direct volume rendering and vector field topology in moving section
planes, i.e. no stream surfaces, and their approach is not interactive.
Second, the earlier mentioned approaches by Garth et al. [12] and Kr-
ishnan et al. [23] yield expressive visualizations, but their approaches
are not interactive in the way that users can modify the rendering in
the way most suitable for their application.

Evaluation. We presented our results to a fluid mechanics expert
whose special subject is vortex breakdown. He regards all the visu-
alizations suitable. He specifically considers the vortex breakdown
bubbles to be a significant improvement over existing visualizations.
With the inner layers of the bubble, the visualization demonstrates the
proportions of rolled-up structures, rapid changes, and its curvature
and twist.

Limitations. As our method uses a large variety of different vi-
sual cues for the communication of the surface structure, we believe
that additionally coloring the surface with other quantities would make
the visualization overly complex. However, because our tool is com-
pletely interactive we can simply switch between the presented and
standard rendering techniques. We therefore recommend the use of
illustrative stream surfaces for the exploration of the surface structure

and a switch to standard rendering with color coding for inspecting
additional quantities at certain locations of the surface.

6 CONCLUSION

The presented combination of stream surfaces and illustrative render-
ing techniques proved to be a very expressive tool for the visualiza-
tion of complex flow structures. It closely resembles hand-drawn flow
images from renowned text-books whose value is undisputed. The ap-
plication of the methods to real world datasets showed the usefulness
and applicability for the analysis of data produced by modern com-
putational fluid dynamics simulations. Silhouettes and illustrative sur-
face streamlines provide overview of the surfaces with their flow direc-
tions, slabs give a good orientation for surfaces with multiple layers,
and Poincaré section-like slices reveal the complete folded structure of
complex flow patterns. Furthermore, all techniques are completely in-
teractive and thus support explorative inspection by domain scientists.
We believe that the resulting images have the same inherent beauty as
their hand-drawn counterparts.

As, in principle, the presented methods can be applied to any kind
of surface parameterized by two variables, we will explore the useful-
ness for other surface types in the future. The focus will lie on streak
surfaces and path surfaces, as we know that their characteristics fit the
prerequisites of our methods.
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[27] H. Löffelmann, L. Mroz, E. Gröller, and W. Purgathofer. Streamarrows:

Visualizing Multiple Layers of Streamsurfaces. Technical report, The

Visual Computer, 1996.
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