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Abstract
We develop and describe saliency clouds, that is, visualization methods employing explainable AI methods to analyze and
interpret deep reinforcement learning (DeepRL) agents working on point cloud-based data. The agent in our application case
is tasked to track particles in high energy physics and is still under development. The point clouds contain properties of particle
hits on layers of a detector as the input to reconstruct the trajectories of the particles. Through visualization of the influence of
different points, their possible connections in an implicit graph, and other features on the decisions of the policy network of the
DeepRL agent, we aim to explain the decision making of the agent in tracking particles and thus support its development. In
particular, we adapt gradient-based saliency mapping methods to work on these point clouds. We show how the properties of
the methods, which were developed for image data, translate to the structurally different point cloud data. Finally, we present
visual representations of saliency clouds supporting visual analysis and interpretation of the RL agent’s policy network.

CCS Concepts
• Human-centered computing → Visualization techniques; • Computing methodologies → Neural networks;

1. Introduction

In recent years, artificial intelligence (AI) has seen an exponential
increase in its integration and deployment in a wide variety of sec-
tors. This increase in the application of AI has led to the increased
demand for explainable AI (XAI) algorithms that can explain or at
least help to explore [ACJ19,ZLZ∗20] these complex AI models to
help developers in debugging and development and also to increase
the user’s trust in these models. Explainable reinforcement learn-
ing (XRL) is a subfield of XAI which focuses on explaining RL
agents, e.g. the deep neural networks in the RL agent (DeepRL).
Image data has been one of the most common datatypes for the
research work in XAI and XRL. However, the use of 3D data has
seen an increased use due to the ubiquitousness of sensors yielding
point-clouds in applications such as autonomous driving and un-
manned aerial vehicles (UAVs). The point-cloud data considered in
this paper stems from yet another application which is a detector
(Figure 1) in particle/medical physics and the RL agent in our ap-
plication case is tasked to reconstruct particle trajectories from the
hits in this detector. The agent is still under development. Our work
is aimed at supporting the development and debugging of this and
other agents working on similar data. Our main contributions are:

• Visualization of saliency attributions in 2D (aggregated) and 3D
to analyze the policy output of the deep RL agent.

• Adaptation of saliency methods to the agent’s point cloud based
neural network (NN), in particular we define

– suitable baselines for integrated gradients [STY17] and

Figure 1: Illustration of detector with hits of 10k simulated pro-
tons entering the 43 detector layers. The arrow indicates the proton
beam direction. Hits in the detector layers are color coded by the
number of detector pixels firing at the same time (cluster size).

– suitable noise for features of different range for Smooth-
Grad [STK∗17]

2. Related Work

A significant amount of XAI literature deals with the anal-
ysis of supervised learning algorithms, one of the types
of ML algorithms. Gradients [SVZ13], Guided Backprop-
agation [SDBR14], Deconvolution [ZF14], integrated gradi-
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ents [STY17], SmoothGrad [STK∗17], Class Activation Mapping
(CAM) [ZKL∗16], Gradient-weighted Class Activation Mapping
(Grad-CAM) [SCD∗17] are some of the significant works in the
last decade towards the explanation of ML models. However, the
research work in XAI field with a focus on point clouds as the input
has been very limited or focused on recognizing objects described
by the point clouds. One work of the latter category by Zheng et
al. [ZCY∗19] proposes a gradient-based saliency method that gen-
erates saliency attributions for a point/set of points based on the
change in prediction of the network when the point/set of points is
excluded. Qi et al. [QYSG17] developed a point cloud classifica-
tion which is self-explanatory in the sense that its learned features
can be visualized by highly activating example point clouds.

XRL, on the other hand, has not seen such an extensive re-
search work in the same period of time. The current XRL meth-
ods can be grouped into two categories: Intrinsic methods use ML
models with transparent architecture which are self-explanatory
such as linear regression and decision tree models. It also in-
cludes representation learning methods wherein a model learns to
extract abstract features which explain the decision making pro-
cess of the RL agent [HJTvdS20] [ZRS∗18] [RHT∗19] [RHT∗18]
[ZWL∗20]. However, these methods lack clear explanations aimed
at end users [HCDR21]. Post-Hoc explainability methods analyze
the ML model after the training process. These methods are model
agnostic, meaning the architecture of the ML model remains unal-
tered. For example, Greydanus, Samuel, et al. [GKDF18] presents
a perturbation-based saliency method for analyzing the RL model
trained to play Atari games. One of the main drawbacks of the
perturbation-based saliency methods is the need for multiple passes
to generate a saliency map corresponding to one input. Gradient-
based saliency methods, on the other hand, use the backpropagation
process to compute the derivative of the output value with respect
to the input values of the RL agent [CWF∗20]. The XRL research
work involving point clouds as the input data is very limited.

In this paper, we extend the gradient-based saliency methods to
the analysis of RL agents with point clouds as the input. We imple-
ment ("vanilla") gradients [SVZ13], integrated gradients [STY17]
and SmoothGrad [STK∗17] methods to compute saliency attribu-
tions and visually analyze the policy output of the RL agent.

3. Application Case: RL Particle Tracking System

The point-cloud data considered in this paper describes particle hits
in a detector for proton computed tomography (pCT) [Joh17]. To
develop a particle detector and the techniques essential for creat-
ing the pCT system, the Bergen pCT Collaboration [ABB∗20] has
been established. The detector being developed is a digital tracking
calorimeter (DTC) which is a multilayer structure made of several
detector/absorber layers. Protons emitted during the imaging pro-
cess are captured throughout their path in the DTC in each layer by
multiple strips of ALPIDE silicon sensors [Mag16], providing both
spatial information of the hits as well as the amount of deposited
energy through the activated pixel cluster size. Due to frequent in-
teractions throughout the detector, significantly influenced by the
absorber plates, the trajectories of the particles tend to deviate from
a straight line path, making the reconstruction of proton traces chal-
lenging.

Figure 2: Graph representation of
the particle data containing 10
tracks. Particles are moving from
left to right and hits of the same
particle have the same color.

In this work, we use
the above-mentioned data
with the density of 100
tracks per frame generated
from the simulations per-
formed during the devel-
opment phase of the detec-
tor. The acquired data has
the form of a layered point
cloud (figure 1) and is used
in the form of a graph im-
plicitly given by the spatial
neighborhood in the layers
(figure 2). Nodes V in the
graph represent hits in the detector layers and edges E represent
possible parts of a reconstructed particle trajectory. The input data
to the RL agent consists of features describing a one-step history
of the tracking process over the last two reconstructed layers and
features of the possible hits of the particles in the following layer.

Model RL models, in general, are value based or policy based or
model based. A policy defines the action that a learning agent takes
at a given state (in our case, the selection of the desired hit in the
following layer when tracking a hit in the current layer), whereas
the value of a state is defined as the total amount of reward that the
learning agent can expect to accumulate over the future, starting
from the current state. In this work, we use actor-critic model of
RL which is a combination of policy and value based approaches.

4. Methods

In this section, we describe the adaptions we propose for the
saliency methods working on point cloud data to reconstruct tracks
of particles and which we employ for the visual analysis of the RL
agent. The saliency methods are Integrated Gradients [STY17] and
SmoothGrad [STK∗17].

4.1. Gradients as Saliency Measure

Gadient-based class saliency mapping has been proposed [SVZ13]
for analyzing convolutional neural networks tasked for image clas-
sification. The saliency map is generated by computing the gradient
of a particular class of interest with respect to the input image. The
number of elements in the saliency map is equal to the number of
pixels in the input image and each element indicates how much a
minor change in pixel value can affect the output class value.

In this work, we compute the gradients of the policy output of
the RL agent with respect to the input of the RL agent representing
the features of the possible next nodes in the following layer. From
here on, we will refer to the features of the node to be tracked as
observation features and the features of the possible next nodes in
the following layer as action features (see figure 3). A part of these
features are computed based on the node in the previous layer. One
of the major issues associated with using vanilla gradients to visu-
ally analyze NNs is that the generated saliency maps are usually
noisy. The noise in the gradients could be the result of meaning-
less local variations in partial derivatives [STK∗17]. This fluctua-
tion makes gradients non-reliable as saliency maps. The class acti-
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Figure 3: Noise generation process for the inputs of RL agent.

vation function Sc is also not continuously differentiable due to the
presence of common activation functions such as Rectified Linear
Units (ReLU) in the neural networks.

4.2. SmoothGrad

The SmoothGrad [STK∗17] method tries to address these issues
by introducing noise into the input x and computing the average of
the saliency maps produced for a given number n of noisy inputs.
Given an input x, the predicted class cp ∈C returned by the network
is determined by finding the argument c ∈C of the maximum value
in the class activation function Sc(x), i.e. cp = argmaxc∈CSc(x) The
gradients of class cp with respect to input x are noted as Mc(x) like
Mc(x) = ∂Sc(x)/∂x. The SmoothGrad saliency map MSG for input
x and output class c can then be formulated as:

MSG =
1
n

n

∑
1
(Mc(x+N(0,σ2)) (1)

Here, N(0,σ2) represents the Gaussian noise with given standard
deviation σ that is added to the input x, and n represents the number
of noisy samples of x generated.

4.2.1. Necessary Adaption

For the analysis of policy network of the RL agent, we generate
noisy samples of inputs by adding Gaussian noise. For this point
cloud data, the range δ and the σ parameters of the Gaussian noise
are based on the variation in the input values. Unlike for image data
where each pixel value varies in the range of 0-255 (or 0-1 depend-
ing on the normalization), the input variables of the RL agent’s pol-
icy network vary differently when compared to each other. In other
words, the ranges of the values of input variables of each node are
independent of each other. Therefore, the range parameter δ is com-
puted for each input variable (see figure 3). We consider the action
features for computing the mean and range of each variable and
add Gaussian noise (σ = δ · 2%) to the variables. Figure 4 shows
the effect of adding noise on the saliency maps generated. We ob-
serve that the noise level upto 10% produces a smoother saliency
cloud. Saliency maps with noise level of 2% are visualized in figure
5. The number of samples to average over is set to n = 100 which
produces smoother gradients for the chosen noise level.

4.3. Integrated Gradients

As other post-hoc saliency mapping methods, the integrated gradi-
ents [STY17] method tries to explain the influence of input values

5% 10% 15% 20% 25%

Figure 4: Effect of adding noise (as % of input values as shown
above) to the input on the saliency maps generated by SmoothGrad.

Noise Track 1 Track 2
% < 0.1 < 0.2 < 0.1 < 0.2
2 1 1 1 1
5 0.83 0.94 0.8 1

10 0.39 0.44 0.1 0.4
15 0 0.11 0 0

Table 1: Effect of noise on the output (with baseline as the input)
when used as a baseline for integrated gradients method.

over the output value of the network. Here, we consider the net-
work as a function F(x) that maps some input x to [0,1]. Further a
baseline input x′, i.e. an input satisfying F(x′) ≈ 0 is considered.
Gradients of F(x) are computed at inputs interpolated (straight line
path) between the baseline x′ and the current input xc. Finally, these
gradients are cumulated to obtain integrated gradients. The baseline
x′ is central to this process and can be quite different for different
types of input data. For image data usually, a black image satisfies
the above mentioned condition for a baseline.

4.3.1. Necessary Adaption

In this work, we use Gaussian noise generated based on the in-
put data as the baseline for the action features. Figure 3 shows the
methodology of generating this noise. The noise x′ we use as base-
line has σ of 2% of the range of the input values and satisfies the
condition F(x′)≈ 0 for every tracking step. Table 1 shows the frac-
tion of layers in two example tracks that output values less than
a threshold (0.1 and 0.2 in this case) for baselines with varying
noise levels. Use of higher magnitude of noise results in F(x′) be-
ing closer to zero for a part of the tracking steps but fails to satisfy
this condition for every tracking step. The number of inputs gener-
ated along the straight line path is set to 200 based on how well it
approximates the integral.

5. Results and Discussion

In this section, we look into the visualization of the saliency attribu-
tions computed using gradients, Integrated Gradients and Smooth-
Grad methods. We focus on the saliency attributions corresponding
to the seven features which have a physical meaning in the real
world. These seven features represent the energy deposition of the
proton hit, Cartesian coordinates in the x and y axis, one-hot en-
coded z coordinate and the polar coordinates (r,θ,φ) of the proton
hit compared to the previous hit.
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(a) Track 1 (b) Ground truth (c) Tracks considered

(d) Gradients: r (e) Integrated grad: r (f) SmoothGrad: r

(g) Gradients: φ (h) Integrated grad: φ (i) SmoothGrad: φ

(j) Track 2 (k) Ground truth (l) Tracks considered

(m) Gradients: r (n) Integrated grad: r (o) SmoothGrad: r

(p) Gradients: φ (q) Integrated grad: φ (r) SmoothGrad: φ

Figure 5: Visualization of the saliency attributions corresponding
to the action features r and φ for two reconstructed tracks (Track 1
and Track 2). The size and the color of translucent blobs indicate
how important the node feature is for the policy output.

Figure 5 shows the normalized saliency attributions for the in-
put features r and φ of action features for two exemplary tracks.
The saliency attributions of all nodes in a layer are normalized to
(0,1) per layer. We focus on the saliency attributions of r and φ

since these two features are considered the most important features
for tracking a particle and therefore, help us comparing the chosen
methods with the gradients. Figures 5a-5i and 5j-5r show the recon-
struction details and the saliency attributions corresponding to the
r and φ features of action features for tracks 1 and 2 respectively.

A closer inspection of the gradients computed for input features
r and φ for both the tracks (5d, 5g, 5m, 5p) shows that the gradients
have higher activation for the neighboring nodes in a few layers
indicating the presence of fluctuations. Figures 5f, 5i, 5o, 5r show

(a) Track 1-Gradient (b) Integrated grad (c) SmoothGrad

(d) Track 2-Gradient (e) Integrated grad (f) SmoothGrad

Figure 6: Visualization of the aggregated saliency attributions cor-
responding to the seven action features of the reconstructed tracks.

that the SmoothGrad method, by adding noise, addresses these fluc-
tuations in the gradients quite effectively. It reinforces the idea of
sharpening the gradient-based saliency maps by averaging the maps
generated from multiple noisy copies of the input. The saliency at-
tributions computed using the Integrated gradients are shown in 5e,
5h, 5n, 5q. These saliency maps demonstrate the importance of in-
put features r and φ of the selected node in the following layer for
every tracking step along the two tracks visualized.

In figure 6, the sum of the magnitude of the saliency attributions
corresponding to the seven features of each node in the action fea-
tures for Track 1 (6a, 6b and 6c) and Track 2 (6d, 6e and 6f) for
every layer are shown. The vanilla gradients (6a and 6d) show high
attention for r and φ in one or two of the layers but remain low and
unclear in the remaining layers. The saliency attributions computed
using the Integrated gradients and SmoothGrad methods clearly in-
dicate that the RL agent pays high attention to the features r and φ

compared to the other features with r having the highest attention
followed by φ in integrated gradients method (see figures 6b and
6e) and feature φ having the highest attention of the RL agent fol-
lowed by feature r in SmoothGrad method (see figures 6c and 6f).
These plots indicate that the RL agent is paying higher attention to
the features r and φ that are considered to be the most important
features among the seven features considered for the analysis.

6. Conclusion

In this paper, we proposed saliency clouds, a set of visualization
methods employing explainable AI methods to analyze and in-
terpret deep reinforcement learning (DeepRL) agents working on
point cloud-based data. We extended the SmoothGrad and inte-
grated gradients methods to generate saliency maps for specific
point clouds and visualized the results in 3D and, in aggregated
way, in 2D graphs. The aggregated view provides insight into the
relative relevance of different features, while the 3D view shows
where a single feature is influencing the result the most. We believe
that these techniques will be used as a tool to analyze the decision
making process of neural networks working on point cloud data.
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