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Abstract Glyphs are a widespread technique to depict local properties of different
kinds of fields. In this paper we present a new glyph for singularities in non-linear
vector fields. We do not simply show the properties of the derivative at the singulari-
ties as most previous methods do, but instead illustrate the behavior that goes beyond
the local linear approximation. We improve the concept of linear neighborhoods to
determine the size of the vicinity from which we derive the data for the glyph. To
obtain data from outside this neighborhood we use integration in the vector field.
The gathered information is used to depict convergence and divergence of the flow,
and non-linear behavior in general. These properties are communicated by color,
radius, the overall shape of the glyphs and streamlets on their surface. This way we
achieve a depiction of the non-linear behavior of the flow around the singularities.

1 Introduction

Vector field singularities (also called critical points), i.e. zeros in the vector field, are
a central ingredient to the analysis of vector field topology [10]. In two-dimensional
as well as three-dimensional vector fields they are the locations at which separatri-
ces (lines in 2D, surfaces in 3D) originate or end. These separatrices partition the
field into areas with streamlines that have the same origin and destination (α and
ω limit sets) and thus allow to divide the fields into areas with similar behavior.
Unfortunately, this partition is only useful for time-independent vector fields or in-
stantaneous snapshots of time-dependent vector fields. When considering complete
time-dependent vector fields the critical points lose their importance concerning a
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Fig. 1 From left to right: Saddle point, saddle Point with seeding sphere, saddle point with seeding
sphere and deformed sphere illustrating the flow behavior, other perspective of previous image and
another perspective of the same image. Note how the glyph (deformed sphere) illustrates the non-
linear behavior around the saddle point; linear behavior would produce an ellipsoid (see 3.2).

partition of the space. Still, for time-dependent fields, they are important in the de-
velopment of certain flow features. The usefulness of their tracking and visualization
has for example been shown in the context of vortex breakdown [7].

The obvious importance of singularities for the overall flow behavior results in
a need for the analysis of the flow in the vicinity of such singularities. In the past
vector field singularities themselves have been visualized mainly by showing either
only their location with a dot or a sphere, or with glyphs illustrating the nature of
their linear approximation. A prominent example of the latter are the iconic rep-
resentations of the repelling/attracting and rotating nature of the field around the
singularities that can be found in a paper by Theisel et al. [21]. They go beyond the
common visualization showing only arrows for the directions of the eigenvectors of
the linear approximation (Jacobian matrix).

In this paper we want to go even further and illustrate also the non-linear behavior
of the field around a singularity. Therefore we introduce glyphs (see figure 1) whose
shape and coloring provide information about the behavior of the flow gathered
during a short time integration in the field. In particular, the main contributions of
this paper are

• an improved and robust computation of the linear neighborhood that was intro-
duced to visualization by Schneider et al. [19],

• a new type of glyphs that is seeded according to this linear neighborhood and
that describes the non-linear behavior of vector field singularities not only in the
directions of the eigen-manifolds,

• and a demonstration of different additions to the glyphs (coloring, FTLE and
streamlets) that emphasize special characteristics of the depicted flow.

As we will show throughout this paper, the introduced techniques can help to im-
prove visualization, understanding and analysis of vector field singularities and their
surrounding flow. Please note that we do not aim at specific new findings in applica-
tion areas. Our method is simply intended to provide additional and complementary
views on the vicinity of the singularities. We explicitly recommend a combination
with other methods (e.g. [15] and [16]) described in section 2.
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2 Related Work

Glyphs are very common in the visualization of vector fields. One of the first tech-
niques uses arrows to depict the vectors themselves. It is not attributable a specific
author. The same holds for the use of tripods to depict the linear behavior of critical
points. A more advanced glyph shown by Theisel et al. [21] was already mentioned
in the introduction. Weinkauf et al. [22] presented an icon for higher order vector
field singularities. De Leeuw and van Wijk [3] combine a collection of iconic rep-
resentations for divergence, rotation, shear, curvature, acceleration and the vector
itself to form a glyph called local flow probe. All properties shown by the local flow
probe are derived from the linear approximation of the field. Additionally, the dis-
play of the flow direction and speed, would not work for singular points as the field
is zero there. Recently, Hentschel et al. [11] successfully demonstrated the use of
glyphs in virtual reality to show the deformation of blood cells in a blood flow.

The technique with the most similarities to our work was reported by Löffelmann
et al. [15]. They present abstract depictions of the eigen-manifolds of some types
of singularities and streamlets on spheres around singularities to illustrate the dy-
namical system in the vicinity of the points. Löffelmann and Gröller improved
this method by adding streamlets around the characteristic curves of the singulari-
ties [16]. In contrast to these methods which focus on the eigen-manifolds of the sin-
gularities, the glyphs produced by our method give an impression of a singularity’s
vicinity in all directions without the need of integral lines started on a sphere around
the singularity. We consider the integral line alternative (e.g. the sphere tufts [15]) to
yield significantly more cluttered images. Another important difference is that our
method can illustrate the interaction of close singularities (see e.g. figure 7).

While all above methods dealing with singularities require them to be hyperbolic,
hyperbolicity is irrelevant for the construction of the presented glyphs.

Recently glyphs have become very popular to illustrate results from diffusion
weighted magnetic resonance imaging [12, 4]. In this context a large number of
different glyph types that show the diffusion strengths in the different directions as
deformed sphere surfaces has been developed [1, 5, 17]. Our approach is inspired
by this type of visualization.

As we advect a surface around a singularity to obtain the glyph, flow volumes [2]
by Becker et al. are also related. However, they do not pay special attention to the
characteristics of singularities and their algorithm is much more complex than our
basic advection because of the volumetric subdivision. For long integration times
our method could also need refinement. The sphere can then be interpreted as a time
surface and advected as described by Krishnan et al. [14]. Note, however, that long
integration are not intended for the glyphs themselves.
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3 Mathematical Foundations

3.1 Linear Neighborhood

For our algorithm we need the concept of a linear neighborhood around a critical
point as introduced by Schneider et al. [19]. We define the linear neighborhood
UL(xc) around a critical point xc ∈R3 as the region for which a linear approximation
of the vector field holds within a certain bound CL ∈ R,CL > 0:

UL(xc) =

{
y ∈ R3

∣∣∣∣ ‖v(y)− J(xc) · (y−xc)‖
‖v(y)‖

<CL

}
(1)

where J denotes the Jacobian. We describe the computation of the neighborhood in
section 4.

3.2 Note on Ellipsoids in Linear Vector Fields

We note that the application of the advection scheme we use to produce the glyphs
leads to the well known ellipsoidal glyphs in linear vector fields with one isolated
singularity1. Thus, glyphs for such vector fields can directly be derived from their
Jacobian matrix defining the whole field. The comparatively costly step of advecting
the sphere is not necessary. This holds to some degree also for the field in the linear
neighborhood around a singularity. For any sensible choice of the linearity threshold
the difference to an ellipsoid will not be visible.

The fact that ellipsoids always transform to ellipsoids in linear vector fields may
not be obvious. Therefore we provide a short discussion in the following. We con-
sider the changes of an ellipsoid under an integral line approximation algorithm
because this is what we use to advect the vertices of the sphere. In the following, we
use the Euler approximation method for simplicity. It is given by yn+1 = yn+h v(yn)
where y0 is the start position, h the step size and v the vector field. In a linear vector
field this can be written as

yn+1 = yn +h Ayn (2)

where A is the matrix defining the linear vector field and its Jacobian matrix at the
same time. Consider all y0 that make up the sphere (which is a special ellipsoid).
If we add the positions of an ellipsoid to those of another ellipsoid the resulting
positions will again fulfill the quadratic equation defining an ellipsoid, i.e. form
an ellipsoid. The same holds for scaling all positions of an ellipsoid. Together this
means, that we need to show that all Ayn lie on an ellipsoid if all yn lie on an ellipsoid

1 Linear vector fields with one isolated singularity are defined by invertible matrices.
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in order to show that equation (2) transforms another ellipsoid to an ellipsoid. Proofs
for this statement are available in the literature, see e.g. Hyslop [13].

4 Linear Neighborhood Computation

In contrast to Schneider et al. [19] who only need to guarantee that their points are
somewhere in the linear neighborhood for some of their operations, we are explicitly
interested in the radius of the largest sphere lying completely in the linear neighbor-
hood. Inside this sphere all positions adhere to the linearity condition. We call the
radius of this sphere the radius of the linear neighborhood.

As vector fields are still mostly stored as discrete samples at vertices (building up
a grid of cells for interpolation), we compute the sphere using a cell-based procedure
outlined by algorithm 1.

input : Position of singularity: singularityPosition
output: Radius of linear neighborhood: radius

cell← SearchCell(singularityPosition);
positions← GetPositions(cell);
posFound← false;
while not posFound do

for pos ∈ positions do
if CheckLinearity(pos) then

add GetNeighboringPositions(pos) to newPositions;
// no duplicates in newPositions

else
posFound← true;
outsidePositions← pos;

end
end
positions← newPositions;

end
pos← FindPositionWithMinDistToSing (outsidePositions,singPos);
minimalRadiusFound← false;
while not minimalRadiusFound do

radius← GetMinLinearRadius(singularityPosition,pos);
minimalRadiusFound← true;
for pos ∈ discretized ball with radius do

if not CheckLinearity(pos) then
minimalRadiusFound← false;
break;

end
end

end
return radius;

Algorithm 1: Computing the radius of the linear neighborhood.
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The linearity test CheckLinearity essentially checks whether the condition
in (1) holds for a certain position. FindPositionWithMinDistToSing se-
lects the position from the given set which is closest to the singularity. After this
call the grid vertex violating the linearity condition which is closest to the singular-
ity has been found. The distance of this vertex to the singularity is an upper bound
for the radius of the linear neighborhood. The second part of the algorithm is con-
cerned with refining the radius. GetMinLinearRadius determines the specific
point on a ray between the vertex and the singularity which first violates the linear-
ity condition. Therefore a binary search2 is performed. The search is confined to the
cell which contains the vertex and which is crossed by the ray. Other cells crossed
by the ray are guaranteed to lie completely in the linear neighborhood.

The procedure so far would already compute a reasonable approximation of the
radius for most cases. To handle also all other cases we check whether the linearity
condition holds for all vertices of a discretized sphere with the radius determined so
far. If the check fails for the first time we use the current vertex to reiterate the binary
search on a ray from this vertex to the singularity. Again, we get an approximation of
the radius and check it on a discretized sphere. We repeat this until we have found a
radius for which no vertex on the sphere violates the linearity condition. This radius
is the radius of the linear neighborhood. The iteration is guaranteed to terminate,
because the radius can only decrease in each step, each step uses a separate binary
search and there is a natural minimum (i.e. zero).

5 The Glyphs

5.1 Glyph Generation

As a starting point for the glyph computation, we place spheres with a fixed radius
around the singularities of the vector field. The centers of the spheres are exactly
at the position of the singularities. The spheres are approximated by repeated sub-
division of icosahedra, so that we obtain triangular discretizations for all spheres.
The vertices of the triangulations of the start spheres serve as starting points for a
integral line computation over a certain time interval. The endpoints of these par-
ticle integrations are stored in a so called flow map vector field, which means that
the endpoint of every integral line is stored at the corresponding vertex. The sim-
plest version of the glyphs, i.e. the spheres advected respectively deformed by the
flow surrounding the singularities, can then be obtained by substituting all sphere
vertices by the corresponding flow map entries.

2 A binary search is suitable here because the error in the linearity condition varies monotonically
along the ray. This is immediately clear for tetrahedral cells because linear interpolation is used for
them. For other cells, i.e. trilinearly interpolated cells, the monotonicity is not given for the whole
cell. However, as the line starts from the “non-linear” vertex closest to the singularity and as the
extrema in a trilinear cell lie on the boundary, the ray can only cross monotonic regions.
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Because the choice of the initial sphere radius and the integration time are crucial
for easily interpretable and meaningful glyphs, we will now discuss different radius
determination approaches.

5.1.1 Choice of Initial Sphere Radii and CL

The simplest choice is a user defined radius for all glyphs. This gives the user max-
imum freedom but may be not the optimal solution concerning depiction of non-
linearity.

If the user is not sure which initial sphere size is suitable for the flow field, the
initial radius of each sphere may be determined semi-automatically. For this purpose
we employ the linear neighborhood introduced in section 3.1, i.e. we use the linear
neighborhood spheres as start spheres. Only the parameter CL has to be given by
the user. It indicates how non-linear the field has to be at the starting sphere. The
resulting radii are meaningful for each glyph separately, because they will reflect
exactly the degree of non-linear flow behavior the user aims to illustrate around each
singularity. This is guaranteed as the advection then starts where a certain degree of
non-linearity starts. According to the considerations in section 3.2 very small CL
will lead to nearly ellipsoidal glyphs. Note, that the semi-automatic choice results
in separate starting radii for the different singularities.

5.1.2 Choice of Integration Time

Besides the choice of the radii for the initial spheres, the integration time for the in-
tegral line computations is very important to obtain meaningful glyphs. Again, users
can either select the value manually or use an automatically computed integration
length for each single initial sphere.

We determine the automatic integration time such that the vertices of a starting
sphere are advected approximately a distance (arc length) that is equal to half the
radius of that sphere. In fact, we determine the median integration time all vertices of
the sphere need to travel this prescribed arc-length. This integration is then used to
advect all vertices of the sphere to their final positions. Thus the glyphs are between
half and 1.5 times the size of the starting sphere.

5.2 Rendering Styles

To elevate the characteristic of the glyphs we provide different color maps and a
glyph evolution.
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5.2.1 Color Maps

Color mapping on the glyphs can support the perception of the deformation of the
initial sphere through the non-linear flow behavior and can be used to add additional
information. We provide two color maps for the first and one color map for the latter
task.

First, the value range of the radii can be mapped on our glyphs. As a result of
this, we obtain depictions of large values at the positions on the glyphs which have
a large distance to their singularity and vice versa we depict small values at the
positions that are close to the singularity. Therefore, this color map emphasizes the
perceptions of the glyph shape and supports its fast and easy interpretation by the
user.

The second color map we provide makes a statement about the deformation of
the glyph relative to the initial sphere. For that purpose, we subtract the radius at all
positions of a glyph from their actual distance to the singularity. Thus, we obtain a
positive value if a position moved outside the initial sphere and a negative value if
the position moved to the inside. Hence, the user is able to get a quick overview of
the glyph shapes relative to the initial spheres without the need to render the spheres.

Coloring glyphs with Lagrangian flow properties depicts divergence and conver-
gence of the flow in the different directions around the singularity. Therefore, we
adapt the surface FTLE technique introduced by Garth et al. [8]. In their paper they
present FTLE computed for surfaces with a small offset from the boundary of flow
embedded surface structures to depict separation of flows. We compute the surface
FTLE for our starting spheres. The resulting scalar field on the glyph is mapped to
color. An example of this version of our glyphs is shown in figure 2 in the right
images. Large values indicate a strong stretching of the spherical surface.

Note that the computation of the FTLE causes only a very small amount of extra
computation time because the most expensive part, i.e. the advection of the vertices
of the starting sphere, is already done for the construction of the glyphs. Only the
evaluation of the FTLE values from the flow map has to be performed addition-
ally. For details on the FTLE computation on surfaces we refer the reader to the
mentioned paper [8] and for more in depth introduction of FTLE itself to works by
Shadden et al. [20] and Haller [9].

Fig. 2 The images show a selection of color maps on glyphs for two close singularities (from left
to right): normalized distance to singularity, signed distance to start position and FTLE+.



Glyphs for Non-Linear Vector Field Singularities 9

Fig. 3 Evolution of a glyph over time. Four steps between initial sphere and final integration time.
The arrows indicate the linear nature of the singularity for reference. The right image is a high
resolution version of the glyph in the left image with color mapping.

Fig. 4 Glyphs with streamlets emphasizing the flow direction. Left: Pair of singularity glyphs.
Right: Overview of a groups of singularities in the gas furnace chamber data set.

5.2.2 Glyph Evolution

Besides the just introduced glyph shapes and color maps, another way to give a
deeper insight into the non-linear flow is to illustrate the deformation of the initial
sphere by showing the evolution of the glyphs over their integration time.

Therefore, we provide the option to interrupt the glyph integration at equidistant
time steps and store the intermediate shapes. Displaying all intermediate shape with
a color coding of the different advection times provides an instructive visualization.
An example for this illustration is given in figure 3.

5.3 Streamlets

In general, our singularity glyphs do not represent rotational flow behavior well. The
color map encoding the movement of the different vertices can give a first hint in this
regard. However, we generate an additional cue for the flow direction. Therefore we
use all glyph vertices as seeding positions for streamlets, i.e. short streamlines (or
path lines in the unsteady case). As integration time we choose half the integration
as for the glyph surface. The streamlets provide the desired directional cues without
obstructing the visibility of the glyph surface. This is demonstrated in figure 4.
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In contrast to Löffelmann et al. [15] who seed their streamlets stochastically on a
sphere, we use the triangulation of the glyph for seeding. This strategy increases the
streamlet density where the flow converges and decreases it where the flow diverges,
thus providing additional information about the flow behavior.

5.4 Steady vs. Unsteady Flow

Up to now we described the technique without any focus on time-dependent or time-
independent vector fields. Fortunately, the whole idea applies to time-dependent as
well as time-independent fields without any major changes. The advection of the
sphere vertices is done exactly the same way. The only difference is that their traces
are path lines instead of streamlines in the unsteady case.

As we discussed earlier, singularities in time-dependent fields have a somewhat
different meaning than in steady fields. Thus they deserve some special comments.
First, we can simply use instantaneous vector field singularities as in the steady
case. However, in the unsteady case there also exist other definitions of meaningful
critical points. The most recent definition are the motion compensated critical points
given by Fuchs et al. [6]. They are not the obvious singularities in the vector field,
but vector field singularities in a specially chosen local frame of reference. As these
singularities are also given as simple points, they fit well into our approach and can
be used as centers for the start spheres. The advection of the points can then be done
either in the originally given field or in the field in the local frame of reference. The
choice depends on the desired meaning: the first simply depicts the flow around the
critical point the second puts a special emphasis on the critical points influence on
its neighborhood.

5.5 Implementation Details

The basis for the glyphs are spheres that have been approximated with the triangular
discretization. As described above, the triangulation is derived by repeated subdivi-
sion of an icosahedron. Except where mentioned explicitly, all images in this paper
use a subdivision depth of three yielding 1280 triangles for each sphere. This res-
olution was sufficient to capture all desired details in our experiments, while being
coarse enough to be easily handled by any graphics card with simple 3D support.

5.6 Special Cases of Glyphs

Figure 5 shows glyphs for singularities close to the boundary. The radius of the start
sphere of some of these glyphs (arrows) is larger than their distance to the bound-
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ary. Thus some of their points lie outside the data domain. These points need special
treatment because they cannot be advected at all. Two possibilities seem useful.
One is discarding all triangles containing such a point. This leaves a holes where the
problematic points are. The hole nicely indicates the fact of non-advectable points
while producing no visual artifacts. Increasing the resolution of the starting spheres
yields smaller holes. This looks nicer but very expensive regarding time and mem-
ory. The second possibility is to clip the mentioned triangles at the data domain
boundary. This results in glyphs nicely attached to the boundary. Jagged parts in
theses glyphs indicate shear flow close to the boundary (which is quite common).
This is also quite costly in our naive implementation. However, this is only needed
for producing final high quality images, and a much more effective implementation
is easily achieved by using acceleration data structures like octrees for the intersec-
tion step.

6 Application Examples and Discussion

Most of the examples used in this paper are singularities from a vector field repre-
senting the flow in a furnace chamber of a central heating system as used in single-
family homes. As can be seen in the overview of the dataset given in figure 6, the
flow contains many (87) isolated singularities as it is very turbulent. The turbulence
in this example is not a problem of the design, it is intended to ensure a good inter-
mixture of air and gas for an effective combustion process.

Fig. 5 Singularity glyphs with manually selected radius close to the boundary of a flow embedded
ball with a hole. Some glyphs (some marked with arrows) are open on one side because the radius
was chosen larger than their distance to the wall. The upper right image shows glyphs with higher
resolution than in the upper left image. The lower right image shows the same glyphs as in the
lower left image but with enabled clipping.
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The large number of singularities in this data set leads to many very close sin-
gularity pairs. The interaction of such singularities is nicely visible in figure 7. The
flow around the left singularity (a source) in the left image is repelling and the right
singularity (a saddle) attracts the flow in one direction. The expansion of the left
glyph causing a “dent” in the right glyph illustrates this effect. A similar illustration
is shown in the right image where the attracting and repelling parts of two sad-
dle points interact. Such an interaction is not representable with any other previous
technique, like for example the eigenvector arrows shown in the same image.

Figure 5 shows glyphs advected in a time-dependent data set. It represents the
flow around a ball with a hole through its center. We use illustrate instantaneous
vector field singularities taken from a single time step. The special properties of the
glyphs in figure 5 have been discussed in section 5.6. We compute all information
for all rendering styles in one step before displaying the glyphs. This allows us to
switch between the different renderings immediately. The computation time of the
preprocessing step ranges from 5 to 30 seconds depending on the chosen glyph
parameters for datasets with less than 100 singularities. Our naive special treatment
of glyphs close to the boundary (mentioned above) is not included in these numbers.
The measurements where performed on one core of an Intel(R) Xeon(R) CPU with
2.40 GHz.

Fig. 6 Left: Overview of glyphs for all singularities of the turbulent furnace chamber dataset.
Right: Zoomed in and slightly rotated version of the same visualization reveals the details. All
images are produced with automatically determined radius and integration time.

Fig. 7 Pairs of glyphs for close-by singularities with radius larger than linear neighborhood.
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7 Conclusion

We have presented a new type of glyphs for vector field singularities that is capable
to illustrate a number of the characteristics of the non-linear behavior of the field
around the singularities. Users can determine the size and meaning of the glyphs
by either prescribing an initial radius or a linearity threshold. Changing the latter
they can explore the different degrees of non-linearity around the singularities. The
glyphs are applicable for time-independent as well as time-dependent vector fields.
The concept can be easily extended to 2D using circles instead of spheres.

In order to keep the flow behavior and its representation by the glyph shape
consistent, some limitations of the overall technique are unavoidable. For example,
we can not scale the glyphs to a size that would make it possible to see an overview
of the whole field with all glyphs in sufficient detail. If we increase the size of the
glyphs after the advection step, the consistence is lost. The glyphs would mislead the
observer to believe that the flow in the volume covered by the glyph is represented by
the glyph although only the flow in a small part of the volume would be responsible
for the shape. Thus, we decided to show the glyphs in their original size (which is
large enough to be noticed in an overview, see figure 6) and leave it to the user to
zoom in to see the details of the local behavior. A future extension simplifying the
analysis of the singularities in the context of the whole dataset could be an interface
similar to the interactive closeups presented in the context of medical exploration
by Ropinski et al. [18]. We recommend to show the starting spheres together with
the glyphs in general (e.g. figure 1). This allows the user to put the deformation
in relation to the original shape. In the paper we have omitted the spheres in most
cases.

As future enhancement, we plan to depict the unsteadiness as introduced by
Fuchs et al. [6] by a color map on the glyphs. We are already working on an ex-
traction of the exact shape of the linear neighborhood (not as sphere).
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15. H. Löffelmann, H. Doleisch, and E. Gröller. Visualizing dynamical systems near critical

points. In Proceedings of the Spring Conference on Computer Graphics and its Applications
1998, pages 175–184, Budmerice, Slovakia, April 1998.
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